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Abstract. We are developing a new lattice QCD code set “Bridge++” aiming at extensible,
readable, and portable workbench for QCD simulations, while keeping a high performance at
the same time. Bridge++ covers conventional lattice actions and numerical algorithms. The
code set is constructed in C++ with an object oriented programming. In this paper we describe
fundamental ingredients of the code and the current status of development.

1. Introduction
A perturbative approach to QCD succeeds in the high energy physics such as the deep inelastic
scattering. On the other hand, it does not apply to the low energy phenomena such as the
quark confinement and the light hadron spectrum. Some nonperturbative methods are necessary.
Lattice QCD is a SU(3) gauge theory defined on 4-dimensional Euclidean lattice, which provides
a nonperturbative framework of the calculation [1]. The path integral quantization enables
Monte Carlo simulations.

Rapid increase of the processor performance and the integration technology of the large-scale
cluster system enables us to apply the lattice simulation to wide range of research area: matrix
elements to test the standard model in LHC and B factory experiments, the phase diagram and
the nature of QCD at finite temperature and density, the force among nucleons, and so on. The
lattice framework is also applied to gauge theories other than QCD, such as a technicolor theory
to explain the mechanism of the Higgs sector of the standard model.

While numerical lattice simulations have become an indispensable tool for theoretical analysis,
the programming technique has become more and more involved. The hybrid parallelization with
MPI and OpenMP is inevitable for the current large-scale system such as K-Computer and Blue
Gene/Q. GPGPUs require an additional development of the code with CUDA or OpenCL. The



Figure 1. Gluon field Uµ and quark ψ on the
lattice. The plaquette Pµν as well as an interaction
of fermion operator ψ̄DWψ are also given.

research groups have to develop new codes for updated machines. It makes these codes hard
to be understood for beginners. In particular, it is a serious problem that new ideas or new
physical quantities cannot be tested quickly.

In view of this programming situation, we started a project to develop a new common code set
“Bridge++” for lattice QCD simulations. We adopt C++ language to make use of the object-
oriented design. Bridge++ has a great deal of readability while keeping sufficient performance
for frontier works. The machine dependent part of the code is hidden as much as possible. The
first version of the code was released in July 2012 under the GNU General Public License. It
is actively being developed to extend functions, brush up its design and the implementation,
improve the performance, and provide more documents. The latest version is 1.1.1. The code
is available from our website [2].

This paper is organized as follows. In the next section, the core constitution of the lattice
QCD simulation is briefly summarized. In Sec. 3, the policy of development of Bridge++ project
is described. Section 4 summarizes our current status of the project and future prospects.

2. Lattice QCD simulations
2.1. Principle of lattice QCD simulations
K.G. Wilson proposed to formulate QCD on a discretized Euclidean spacetime, namely on a
lattice [3]. It enables a nonperturbative analysis of QCD by numerical simulations.

In lattice QCD, the gauge field Aµ is represented as 3 × 3 complex matrices on the link
connecting the nearest neighbor sites such that Uµ(n) = exp(igAµ(n)), where g is the strong
coupling constant and n = (nx, ny, nz, nt) is a lattice site (Fig. 1). The number of lattice sites
is finite in the numerical simulation by the lattice size Lµ, nµ = 1, . . . , Lµ, µ = x, y, z, t. The
quark field ψ is represented as a complex vector on a lattice site which carries 3 components of
color and 4 components of spinor.

Applying the path integral quantization, an expectation value of observable O is given by a
functional integral

〈O〉 =
1

Z

∫
DψDψDUµO(ψ,ψ, Uµ)e−Slat =

1

Z

∫
DUµO(Uµ) det(D)e−SG , (1)

where Z is the partition function and Slat = SG+SF with the gauge part SG and the fermion part
SF = ψ̄Dψ of the lattice QCD action, respectively. The quark field is integrated by hand and
arrives at the second equality of Eq. (1). The quark propagator D−1 expresses a propagation
from a site to another site. Hadron spectrum can be extracted from the hadron correlation
functions that are composed of quark propagators.

The expectation value is calculated by generating ensemble of gauge fields with Monte Carlo
method under the probability

P (U) ∝ det(D[U ])e−SG[U ], (2)



where U represents a gauge configuration {Uµ(x)}. Once the ensemble of independent

configurations U (i) (i = 1, . . . , N) are in hand, an expectation value of the physical observable
is obtained by

〈O〉 =
1

N

N∑
i=1

O[U (i)]. (3)

It is noted that the expectation value 〈O〉 has not only the statistical error but also several
systematic errors. Numerical simulations are inevitably performed at finite lattice spacing and
finite volume. It is imperative to control these errors for a precise study.

2.2. Lattice QCD actions
We introduce the fundamental form of the gauge and fermion actions. An action on the lattice
is constructed under the following principles.

• The lattice action must be invariant under the gauge transformation.

• The lattice action must coincide with the continuum theory in the continuum limit, i.e. the
lattice spacing a→ 0.

• The lattice action should retain symmetries in the continuum theory as much as possible.

The lattice action is not unique, because there is freedom to add a term which vanishes in
the continuum limit. Variety of lattice QCD simulations originate from the type of the lattice
actions.

The standard gauge action was given by Wilson, and thus called Wilson (plaquette) action:

SG = −Nc

g2

∑
n

∑
µ6=ν

Pµν(n), Pµν(n) =
1

Nc
tr
[
Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n)

]
, (4)

where Nc = 3 is the number of color, n is a site, µ̂ is a unit vector in µ-direction. Pµν(n) is the
smallest closed loop made of link variables called plaquette. It corresponds to the field strength.
This action agrees with the continuum gauge action up to O(a2) corrections. By adding closed
loops, such as rectangular loops, improved gauge action is constructed so as to reduce the O(a2)
effects.

The lattice fermion action is more complicated. A naive discretization of the continuum
fermion action results in so-called doubling problem: the propagator possesses undesirable
additional poles called doublers corresponding to particles at the edges of the Brillouin zone.
There are other ways to circumvent the doubling problem. It provides a type of fermion actions.
The simplest idea is to add a second derivative term to eliminate doublers. This leads to the
Wilson fermion action constructed from the Wilson fermion operator DW which connects a site
m to n such that

DW (m,n) = δm,n − κ
4∑

µ=1

[
(1− γµ)Uµ(m)δm+µ̂,n + (1 + γµ)U †µ(m− µ̂)δm−µ̂,n

]
. (5)

γµ is a 4× 4 matrix acting on the spinor space, and κ is a parameter related to the quark mass
mq through κ = 1/(2mq + 8). It should be noticed that the second derivative term violates the
chiral symmetry on the lattice, though it vanishes in the continuum limit. It has recently become
popular to adopt the fermion operators which respects the chiral symmetry on the lattice at the
numerical cost, such as the domain-wall and overlap operators.



2.3. Generating gauge configurations
The simplest hybrid Monte Carlo (HMC) algorithm is explained. HMC is a standard algorithm
to generate gauge field configuration from U (i) to U (i+1).

Since detD is hard to be evaluated, we represent it as an integration of boson fields, called the
pseudo-fermion fields. For two flavors of degenerate quark masses, det(D†D) is to be evaluated
as

Z =

∫
DU det(D†D)e−SG =

∫
DUDφ†Dφe−SG−φ†(D†D)−1φ (6)

We need to integrate the link variable U and pseudo-fermion φ, whose action contains an inverse
of the fermion operators, (D†D)−1.

The new configuration is brought by evolutions of U and its conjugate momentum P . The
Hamiltonian of P and U governs the evolution with respect to the fictitious time that is
independent from the original temporal coordinate. During the evolution of P and U , φ is
kept fixed as external field. P and φ are given randomly at the beginning of the evolution
equation. In solving the evolution equations numerically, a finite step size provides a systematic
error. This error can be compensated by a Metropolis test of the difference of Hamiltonian at
the beginning and the end of the evolution.

To summarize, the gauge configuration is generated in the following steps.

• Generate the pseudo-fermion φ under the probability P ∝ exp[−φ†(D†D)−1φ], this can
be realized by Gaussian random number ξ, under the probability P = exp(−ξ†ξ), and
φ = D−1ξ.

• Set the conjugate momentum P with Gaussian probability distribution.

• Solve the evolution equation for U and P with respect to the time step. To evaluate the
force of P , one needs to solve a linear equation for a large sparse matrix, x = (D†D)−1φ.

• After getting a candidate of new configuration {P ′, U ′}, calculate the deference of
Hamiltonian ∆H = H[U ′, P ′, φ] −H[U,P, φ] and accept U ′ as new configuration with the
probability max{1, e−∆H}. If rejected, the old configuration is adopted as the new one.

Using the gauge configurations, expectation values of observables can be computed according to
Eq. (3).

3. Lattice QCD code set Bridge++
3.1. Bridge++ project
Bridge++ project starts on the following background. There are many lattice QCD codes, such
as MILC code (in C, USA) [4], CPS++ (C++, USA) [5], Chroma (C++, Europe) [6], and
Lattice QCD Toolkit (Fortran, Japan) [7]. We have realized, however, it is problematic that
there has been no genuine code set other than Lattice QCD Toolkit in Japan, although Japan
is one of the centers of lattice QCD simulations. It is desirable to possess a code set under
our management, because it can instantly reflect a feedback of modifications, machine specific
tunings, and other improvements. Another reason is that it has no black box. We can confirm
and understand the code genuinely. In addition, a new code does not have a phantasm from the
development history, which sometimes discourages a beginner.

For these reasons, we have started a development of our new code set, named Bridge++, in
2009. We aimed that this general-purpose code set should have the followings features:

• Readability: the code structure is transparent so as to be understandable even for beginners.

• Extensibility: the code is easy to be modified for testing new ideas.

• Portability: the code runs not only on laptop PC but also on supercomputers.

• High-performance: the code has a high performance enough for productive research.



To achieve these goals, we adopt an object oriented design in C++ programming language. MPI
is used for distributed memory machines. In Bridge++ code set, we use several simple idioms
repeatedly. Such repetition helps beginners to understand the idioms and the code structure.
The code is managed with a repository and bug tracking system.

In July 2012, the first version of Bridge++ was released. It contains fundamental lattice
actions, linear algebraic algorithms, and various physical quantities. The documents are
compiled on wiki as well as TeX based reports. We also provide a HTML document generated
by doxygen [9] from the comments in the source file.

3.2. Object-oriented programing
Object-oriented programing (OOP) is employed in Bridge++. It is based on “Objects”, which
are sets of data fields and methods. A problem is solved using an interaction between objects.
Data field is a characteristic variable of the object, called a member data or a member variable.
Method is a function that defines a behavior of the object.

OOP is characterized by the following properties.

• Encapsulation: data is handled through the interface, that defines how to use the object.

• Inheritance: object is expandable by adding new functions.

• Polymorphism: objects with the same kind of behavior can be handled through the same
interface.

These properties are mechanisms to maximize reusability of the code. Using OOP, an interface
is separated from details of implementation, and localize the latter which is sometimes specific
to the architecture due to optimization. The polymorphism allows us to implement an algorithm
with a set of objects that have the common interface.

There is a compilation of wisdom to make use of these virtues of OOP. An example is so-
called design patterns [10, 11]. The design pattern is a kind of programing idiom that frequently
appears as a good solution to certain kind of problems. Their efficiency has been realized after
the GoF’s publication [10] that classified such idioms into 23 design patterns. The design pattern
enables us to use the benefit of OOP easily, as well as to make our code transparent.

In the following, we introduce two design patterns and show how they are applied to our
problems.

3.3. Bridge pattern and linear equation solver
Bridge pattern is a design pattern which decouples an interface from its implementation so that
they can switch independently. Bridge++ employs this bridge pattern. It has advantages for
readability and further developments.

A typical example of the bridge pattern is an implementation of a solver algorithm and a
fermion operator. In lattice QCD simulation, the most time consuming part is solving a linear
equation for the fermion operator. An example is the Wilson fermion operator in Eq. 5, which
contains couplings up to the nearest neighbors, and thus is a large sparse complex matrix with
a rank of 3 × 4 × Nx × Ny × Nz × Nt. The propagator is the inverse of the quark operator,
Sq(m,n) = D−1(m,n). It is obtained by solving a linear equation∑

l

D(m, l)Sq(l, n) = δm,n, (7)

where color and spin indexes are omitted. There are numbers of fermion operators and solver
algorithms. The best solver algorithm depends on a type of the fermion operator. The solver
algorithm should be implemented so as to be applied to any kind of fermion operators, and
simultaneously solver algorithms must be changed easily.



Figure 2. Class diagram of the Bridge
pattern applied to a linear solvers.

Figure 3. Class diagram of the Composite
pattern applied to the HMC integrators.

Figure 2 shows the class diagram of the Bridge pattern based on UML (Unified Modeling
Language). The interface of the fermion operator is Fopr. mult() is a function that applies
the fermion operator to a given vector and returns the resultant vector. The practical
implementation of mult() is given in a subclass of Fopr, such as Fopr Wilson for the Wilson
fermion and Fopr Overlap for the overlap fermion. Similarly the base class Solver defines the
interface of the solver algorithms. solve() function returns the solution of a linear equation
for a given source vector. Again the practical implementation is given in subclasses, Solver CG

and Solver BiCGStab. Bridge++ users can select any combination such as Fopr Wilson with
Solver CG.

3.4. Composite pattern and HMC integrator
Composite pattern is a design pattern that treats a group of objects as a single instance of an
object. It is convenient to implement a tree structure or nested objects. In bridge++, it is used
in the HMC algorithm.

HMC evolves {P,U} according to the Hamiltonian equation discretized by a leapfrog
integrator, (

P (τ)
U(τ)

)
= V (τ)

(
P (0)
U(0)

)
, V (τ) =

[
VP

(
∆τ

2

)
VU (∆τ)VP

(
∆τ

2

)]N
, (8)

where N is the total number of the leapfrog steps and ∆τ = τ/N . V describes the evolution,

VP (∆τ) · P (τ) = P (τ) + ∆τF (τ), VU (∆τ) · U(τ) = exp(iP∆τ)U(τ). (9)

F (τ) = δSlat/δU is the force of the conjugate momentum.
Instead of the simple integrator, multi-time step integrator can be adopted. It varies the

number of time steps for the action terms, according to the contribution to the force. The
integrator is

V =

[
V

(F )
P

(
∆τ

2

)
V1(∆τ)V

(F )
P

(
∆τ

2

)]N
, V1 =

[
V

(G)
P

(
∆τ

2N1

)
VU (∆τ/N1)V

(G)
P

(
∆τ

2N1

)]N1

, (10)

where V
(G)
P and V

(F )
P are the integrator of P with the gauge and fermion forces, respectively.

Adjusting N1 by monitoring the size of the forces enables us to reduce the step size error,
keeping the total numerical cost fixed. In addition, the leapfrog integrator can be replaced
with an improved integrator, such as Omelyan integrator, which reduces the finite step size
corrections.

Figure 3 shows the class diagram of the Composite pattern applied to the integrator. The
base class of the integrator is defined as Integrator, which has a virtual method evolve().
Its subclass Update U plays the role of VU . The evolution operators V and V1 are implemented
by Leapfrog or Omelyan. An object of these classes may have other objects of subclasses of
Integrator. This relation is represented in Figure 3 as lines with diamond. In analogy to the
file system, V play a role of the directory, and VP and VU are files in the directory.



Table 1. Features and our development status of the fermion actions. In the last column,
‘public’ means that is included in the public version and ‘testing’ has already been implemented
and being confirmed.

Action chiral symmetry numerical cost Status

Wilson violated middle public
Clover violated middle public
Twisted mass violated middle testing
Staggered partially remains low testing
Domain-wall almost exact high testing
Overlap exact very high testing

3.5. Parallelization
For a current computational environment, parallelization is inevitable. Large-scale computers
consist of nodes which have own memory devices and communicate with each other via high
speed network. In addition, each node has many processor cores sharing memory.

Bridge++ works on one node as well as parallel nodes. In Bridge++, we adopt MPI (Message
Passing Interface) for a distributed memory parallelization, i.e. for parallel nodes. An inter-
node communication, such as broadcast and one-to-one data transfer, is performed through the
functions of the Communicator class, which wraps API functions of MPI. If a machine-specific
efficient library is available, the implementation of Communicator class is replaced with the
one that uses the library. For an environment without MPI, so-called stub implementation of
Communicator class is provided.

It is noted that a shared memory parallelization of Bridge++ is now under development.
Hybrid parallelization with MPI and multi-threading has been considered. Two multi-thread
libraries, Pthread and OpenMP, are compared based on a working implementation of the Wilson
fermion operator. While Pthread can accomplish better performance, it is not easy to apply it
to the entire code set. OpenMP has been selected as a primary method to multi-threading and
performing performance tuning toward incorporating in the next release.

3.6. I/O format
In Bridge++, simulation parameters are given by ASCII files in YAML format. The parameters
are held in Parameter object. It passes the parameters to each object. Extraction of values
from files is handled by a parameter manager class. For the I/O of field objects, several formats
are available including ILDG standard format for the gauge configuration. ILDG (International
Lattice Data Grid) is an activity to promote sharing configuration data and standardizing data
format and description of metadata [8]. The standard output is classified with a verbose level.
At present 4 levels are prepared and the output level is selected for each object, such as a linear
solver or an observable. There is a extra mode to generate a message with pragma for ILDG
metadata generation.

4. Current status and future prospects
The current public version contains major algorithms and observables, though the fermion
actions are limited to Wilson and clover fermions. Other fermion actions have been implemented
and now being tested. Our status is summarized in Table 1, together with the features of each
action. These fermion action can be improved by smearing link variable. The smearing has been
implemented in Bridge++.



For linear algorithms, major iterative algorithms, such as CG, BiCGStab, GMRES, are
available. Multi-shift solver with CG algorithm and eigensolver with Implicitly restarted Lanczos
algorithm are also ready.

The status of performance is as follows. As a typical example, we quote the sustained
performance for the HMC with clover fermions. On Hitachi SR16000, the rate to the peak
performance is about 5% on 1 node (32 cores). On Blue Gene/Q, the public version runs with 2-
3% on 32-nodes, while the latest code under development has improved the most time consuming
solver part to more than 10%.

Toward the next public release, we are now incorporating the multi-threading to Bridge++.
Performance tuning is now in progress. Active investigation to make use of GPGPU is also
underway.
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