目次

✓第1回目 高エネルギー天体物理の基礎 「星の進化、超新星爆発の標準理論」

✓第2回目 <u>シミュレーション研究最前線</u> 「爆発天体現象のエンジンは解明されたか?」

✓第3回目 <u>ニュートリノ輻射流体数値計算法</u> 「如何にダイナミクスをsimulateするか?」

/第4回目 マルチメッセンジャー天文学に向けて (重力波・ニュートリノ・多波長電磁波観測)

<u>超新星からのマルチメッセンジャーを解読する重要性</u>

Energy-drivers for explosions:	爆発したの?
Neutrino heating mechanism aided by convection/SASI (Marek & Janka 09, Suwa et al. 10, Bruenn et al. 09) also aided by rotation (Kotake+03,06, Walder+05,Ott+08, Suwa et al. 10)	Most Likely! (現状2Dでは、 状態方程式が非常に 柔らかい場合のみ, 弱い爆発を起こす。 現在 第一原理の 3D計算に進みつつある)
Acoustic-power deposition <u>Acoustic mechanism</u> : (Burrows+. 2006, Ott+07)	Strong explosion!,but (多数決の原理だと、 旗色が悪い)
Extraction of rotational energy via B-fields <u>MHD mechanism</u> : (LeBlanc & Wilson 70, Symbalisty (84), KK+04, Takiwaki+05 Shibata+06, Obergaulinger+06, Cerda Duran+07, Burrows+07, Suwa+07, Takiwaki+08)	Jet-like explosion! (relevance to magnetar or Collapsar), but minor (< 1% of all supernovae) (普遍的なメカニズムでは 無い)

<u>超新星からのマルチメッセンジャーを解読する重要性</u>

Energy-drivers for explosions:	爆発したの?
Neutrino heating mechanism aided by convection/SASI (Marek & Janka 09, Suwa et al. 10, Bruenn et al. 09) also aided by rotation (Kotake+03,06, Walder+05,Ott+08, Suwa et al. 10)	Most Likely! (現状2Dでは、 状態方程式が非常に 柔らかい場合のみ, 弱い爆発を起こす。 現在第一原理の 3D計算に進みつつある)
Acoustic-power deposition <u>Acoustic mechanism</u> : (Burrows+. 2006, Ott+07)	Strong explosion!,but (多数決の原理だと、 旗色が悪い)
/理論チデルけるク	

✔爆発メカニズムの正解を決めるには観測との比較が不可欠。 ✔超新星を内(理論)と外(観測)から 調べるスタイルがベスト

超新星からのマルチメッセンジャー 重力波、ニュートリノ& 元素合成

✔重力波強度∝1/R,ニュートリノ・光強度∝1/R² 重力波は遠くまで見える! ✔ 重力波は一旦生成されたら、環境と相互作用せず伝搬:live messenger

Outline

§4 超新星からの マルチメッセンジャー

✓超新星からの重力波

✓超新星からのニュートリノ (元素合成)

まとめと展望

Einsteinの予言(一般相対性理論 1916)

質量が加速度運動する際生まれる 時空の歪みが(時空を)光の速度で 伝播する現象

電磁気学

一電場・磁場の揺らぎ

一般相対性理論 質点

重力場の揺らぎ

重力波

重力波に関するエトセトラ

✔ 重力波振幅"h"はひずみの強さ(strain)

 $\Delta L = h \times L$

伸び縮みの大きさ=重力波の振幅×もともとの大きさ

- ✓ 典型的な観測可能強度 h = 10⁻²¹
 - 東京一大阪間(556km)が原子核一個分(5fm)
 - ・地球ー太陽間(1億5000万km)が原子一個(0.1nm)
 - 銀河系の大きさ(10万光年)が1m
- ✓ 時空のさざ波(重力波)は直接観測された例はない。 検出器のデザインはマイケルソン干渉計。 (20XX)
- ✓ 重力波存在の間接的検証を可能にしたのは、 中性子星連星系(binary pulsar)の発見

<u>重力波に関するエトセトラ</u>

✔ 重力波振幅"h"はひずみの強さ(strain)

 $\Delta L = h \times L$

伸び縮みの大きさ=重力波の振幅×もともとの大きさ

✓ 典型的な観測可能強度

 $h = 10^{-21}$

- 東京一大阪間(556km)が原子核一個分(5fm)
- ・地球ー太陽間(1億5000万km)が原子一個(0.1nm)
- 銀河系の大きさ(10万光年)が1m
- ✓ 時空のさざ波(重力波)は直接観測された例はない。 検出器のデザインはマイケルソン干渉計。 (20XX)
- ✓ 重力波存在の間接的検証を可能にしたのは、 中性子星連星系(binary pulsar)の発見

<u>重力波に関するエトセトラ</u>

✔ 重力波振幅"h"はひずみの強さ(strain)

伸び縮みの大きさ=重力波の振幅×もともとの大きさ

✓ 典型的な観測可能強度

✓思考実験「重力波を頑張って作る」

 $h \approx \frac{GMv^2}{V}$

rc⁴

Mass(M) : **440000** t Length :300m Frequency: 2/s Observer distance(r): 10m

Koji Murofushi, Medalist Hammer thrower

この重力波を捉えられるか? ✓ "h"はひずみの強さ(strain) $\Delta L = h \times L$

 $h = 5 \times 10^{-30}$

伸び縮みの大きさ= 重力波の振幅×もともとの大き

重力波検出器の感度曲線

現行の検出器の検出限界はおよそ、10-21

重力波検出器の感度曲線

現行の検出器の検出限界はおよそ、10-21

超新星から放出される重力波

3つの爆発メカニズムと重力波の特徴

バウンス時の重力波のオーダー評価

四重極公式:
$$h_{i,j}^{TT}(R) = \frac{2G}{c^4} \frac{1}{R} \frac{d^2}{dt^2} I_{i,j}^{TT}(t - \frac{R}{c})$$
 (ref. Gravitation & Cosmology, Weinberg
Landau Lifshitz, Classical Field theory)
here Quadrupole moment: $I_{i,j} = \int \rho(x)(x_i x_j - \frac{1}{3}x^2\delta_{i,j})d^3x$
R:超新星への距離

〈典型的強度
 $h \sim \frac{2G}{c^4D} \frac{MR^2}{T_{dyn}^2} \epsilon \sim \frac{300 \text{ cm}}{D} \epsilon \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{10 \text{ km}}\right)^2 \left(\frac{T_{dyn}}{1 \text{ ms}}\right)^{-2}$
 $\sim 10^{-20} \epsilon \left(\frac{10 \text{ kpc}}{D}\right) \left(\frac{R}{10 \text{ km}}\right)^2 \left(\frac{T_{dyn}}{1 \text{ ms}}\right)^{-2}$
 $\sqrt{$ 典型的周波数} $t_{dyn} \sim \frac{1}{\sqrt{G\rho}} \sim 1 \operatorname{msec}\left(\frac{\rho_{\text{core}}}{10^{13} \text{ gcm}^{-3}}\right)^{-1/2}$
 $\nu \sim \frac{1}{t_{dyn}} \sim 100 \text{ Hz} \sim 1 \text{ kHz}$

〈自転が速くなる→遠心力大→重力崩壞阻害→中心密度@バウンス下がる
→重力波周波数下がる

バウンス時の重力波のオーダー評価

<u>☆バウンス時の重力波シグナル</u>

一般相対論的流体計算によるバウンス期の重力波形

Dimmelmeier et al.(07,08),PRD

一般相対論的流体計算によるバウンス期の重力波形

Dimmelmeier et al.(07,08),PRD

- ✓マイクロ物理は<u>Ye処方</u>(3回目参照)
 ✓ 140 models
 - (初期の鉄コアの角運動量、 微分回転の度合いを系統的に変化、 uncertain 2回目参照)
- ✓ 状態方程式:2パターン (Lattimer & Swesty or Shen EOS).
 ✓ 親星:6パターン

Туре І

See Kotake et al. (2006), Ott (2009) for a recent review

(詳しくは、本レクチャーシリーズ第一回、柴田大氏の講義参照)

 $g_{\mu\nu}$ をどう求めるか?

・平坦な空間(ミンコフスキー空間)の場合

$$g^{\mu\nu} \longrightarrow \eta^{\mu\nu} \equiv \text{diag}(-1, 1, 1, 1)$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

$$R_{\mu\nu}$$
 リーマン曲率テンソル

物質のエネルギー運動量テンソル

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$

$$R_{\mu\nu}$$
も R , $g_{\mu\nu}$ の関数

$$\nabla^2 \phi = 4\pi G \rho$$

T=Oで束縛方程式を解き、その後は発展方程式(双曲型)を解く。

<u>MHD爆発に伴って放出される重力波</u>

(e.g., Kotake et al. (04), Obergaulinger et al.(06), Shibata et al.(06), Takiwaki & Kotake (10))

$$h_{ij}^{TT}(R) = \frac{2G}{c^4} \frac{1}{R} \frac{d^2}{dt^2} I_{ij}^{TT} \left(t - \frac{R}{c} \right)$$
四重極モーメント
 $I_{ij} = \int \rho_*(x,t) \left(x_i x_j - \frac{1}{3} x^2 \delta_{ij} \right) d^3 x$
 $\rho_* = \rho + \frac{B^2}{8\pi c^2}$
 $h_{\theta\theta}^{TT} = \frac{1}{8} \left(\frac{15}{\pi} \right)^{1/2} \sin^2 \alpha \, \frac{A_{20}^{E2}}{R}$
 $A_{20}^{E2} \equiv A_{20,\text{quad}}^{E2} + A_{20,\text{quad}}^{E2}$
 $A_{20,\text{quad}}^{E2} = A_{20,\text{quad}}^{E2} + A_{20,\text{quad}}^{E2}$
 $A_{20,\text{quad}}^{E2} = \frac{G}{c^4} \frac{32\pi^3}{\sqrt{15}} \int dz \int_0^{\infty} r^2 dr$
 $(\rho + e + p + |b|^2) W^2 \left(v_r v_r \left(3z^2 - 1 \right) + v_\theta v_\theta \left(2 - 3z^2 \right) - v_\phi v_\phi - 6v_r v_\theta z \sqrt{1 - z^2} \right)$
 $\Phi \nabla \Phi \left(\left(\rho + e + p + |b|^2 \right) W^2 - \left(p + \frac{|b|^2}{2} \right) - b^{0^2} \right) \left(-r \partial_r \left(\Phi \right) \left(3z^2 - 1 \right) + 3\partial_\theta \left(\Phi \right) z \sqrt{1 - z^2} \right)$
 (15)

磁場パート ~ B*B

MHD爆発に伴って放出される重力波

3つの爆発メカニズムと重力波の特徴

ニュートリノ駆動爆発からの重力波:代表例

ニュートリノ起源の重力波とは?

$$h^{\mu\nu}(t, \boldsymbol{x}) = 4 \int \frac{T^{\mu\nu}(t - |\boldsymbol{x} - \boldsymbol{x}'|, \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} d^3 \boldsymbol{x}'$$

$$T^{\mu\nu} = T^{\mu\nu}_{\rm matter} + T^{\mu\nu}_{\rm neutrino}$$

Epstein(78) ApJ, Mueller & Janka (97) A&A

$$h_{\nu}(t) = \frac{2G}{c^{4}R} \int_{0}^{t} dt L_{\nu}(t') \alpha(t')$$

Neutrino anisotropy: degree of anisotropic neutrino radiation (zero if spherical)

典型的強度:
$$|h_{\nu}| \sim 10^{-21} \left(\frac{\alpha}{0.01}\right) \left(\frac{L_{\nu}}{10^{52} \text{erg/s}}\right) \left(\frac{\delta t}{1 \text{ sec}}\right) \left(\frac{R}{10 \text{ kpc}}\right)^{-1}$$

$$|h_{\nu}| \sim h_{\text{bounce}} \sim 10^{-21} \ (10 \text{kpc})$$

 $\nu_{\nu} \sim \frac{1}{t} \leq 100 \text{ Hz}$

, longer than the bounce signal because the dynamical time scale is determined at the position of neutrino sphere, where forms further out from the center.

ニュートリノ起源の重力波、低周波(<100Hz) 強度は物質起源の重力波と同程度.

典型的周波数:

$$t_{\nu} \sim \frac{1}{\sqrt{G\rho}} \ge 10 \, \mathrm{msec} \left(\frac{\rho_{\mathrm{trap}}}{10^{11} \, \mathrm{g cm}^{-3}} \right)^{-1/2}$$

Space-Time Diagram for Neutrino GWs

GW from no-rotating 15 M_{sun} star \rightarrow seemingly to explode later (?)

From Oak Ridge simulations GW from no-rotating 15 Msun star \rightarrow explosion

✓ 波形はあらかじめ予測できない(stochastic に変動する)

→爆発のダイナミクスが対流&SASIと言った非線形プロセスで決まっているから。

✓ 銀河中心の超新星に関して、その検出には次世代重力波干渉計が必要.
 (後述)
<u>2D and 3D simulationでの爆発形状の違い</u>

Log(密度) エントロピー Entropy [kB/baryon] Gravitational Wave [10^-21] 18.0 h_p+ ---- h_px ----- h_e+ ----- h_ex t = 1T=61.8548 ms ms 0 20 15 15 12.8 10 10 Ω 100 200 300 400 500 Time [ms] 5 5 7.7 500 400 500 200 300 r [km] r [hm] Suwa et al. (10)PASJL Z For 2D models, explosions tend 2.5Y X to occur along the coordinate symmetry axis. KK et al. (09,11)ApJ

✓3Dでは2Dに比べ、爆発の様子がストキャスティックになる。

<u>2D and 3D simulationでの重力波形の違い</u>

Kotake et al. (2009a,b),ApJL, ApJ

✓ Ray-tracing based analysis for the neutrino-originated GWs

The input neutrino luminosity differs only 0.5 %.

✓重力波も、2Dより3Dの方がよりstochastic に変動.
 ✓重力波信号は3Dの方が小さくなるが、依然、次世代検出器のターゲット内

<u>「3つの爆発メカニズム」と「その重力波形」</u>

観测可能性

☆銀河中心超新星からの重力波を捉えるのに、次世代検出器が不可欠。
 ☆いつ起こるか分からない(波形予言の精密化、データ解析法が進行中)
 ☆MHD爆発、ニュートリノ駆動爆発の峻別?

超新星ニュートリ. (イントロダクション

[⌈] 5 min for introduction]

Credit:SuperKamiokande

内容

✓ ニュートリノ振動へ向けた準備 ☆ 研究小史 ☆ニュートリノ振動:真空中 :一様物質中 :非一様物質中 ☆太陽ニュートリノ、大気ニュートリノ問題

✓ 超新星ニュートリノ

ニュートリノ研究「小史」

ニュートリノ振動 (1/4)

ニュートリノ振動:真空振動(1/3)

ニュートリノ振動:真空振動 (2/3)

遷移確率:

$$P_{\nu_{e} \to \nu_{e}}(z) = |\langle \nu_{e} | \nu(z) \rangle|^{2} = 1 - \sin^{2} 2\theta \sin^{2} \left(\pi \frac{z}{\ell_{osc}} \right) \qquad P_{\nu_{\mu} \to \nu_{e}}(z) = P_{\nu_{\mu} \to \nu_{\mu}}(z),$$

簡単に示せる

$$\ell_{\rm osc} \equiv \frac{4\pi E}{\Delta m^2} = 2.48 \times 10^7 \,\mathrm{cm} \left(\frac{E}{1 \,\mathrm{MeV}}\right) \left(\frac{10^{-5} \,\mathrm{eV}}{\Delta m^2}\right)$$

✓振動現象を観測する為には、
 Zが大きくとる必要がある。
 (θ、質量差²へのプローブ)
 ☆ 長基線実験(筑波・SK)

 $\Delta m^2 \equiv m_2^2 - m_1^2$

天文学的ソース ☆大気ニュートリノ、太陽ニュートリノ 超新星ニュートリノ

ニュートリノ振動:一様物質中での振動 (2/2)

<u>ニュートリノ振動:非一様物質中での振動 (2/2)</u>

太陽ニュートリノ問題

太陽中心部での核反応

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

電子型ニュートリノが足りない!

[SNO, PRC 72 (2005) 055502, nucl-ex/0502021]

<u>太陽ニュートリノ問題</u>

太陽中心部での核反応

[SNO, PRC 72 (2005) 055502, nucl-ex/0502021]

[Super-Kamiokande, PRD 71 (2005) 112005, hep-ex/0501064]

いままでの振動実験の結果のまとめ

> 1±

Kamland(日本)

	σ	した実験)					
Δm_{21}^2	(7.6 ± 0.01)	$(0.2) 10^{-5} \mathrm{e}^{-5}$	eV^2	Kar	nLAND		1000t 重水
$\sin^2 \theta_{12}$	0.32 ± 0.00	0.023		SN	C		MINOS実験 カナダ国境 カナダ国境
$ \Delta m^2_{31} $	(2.4 ± 0)	$(0.15) 10^{-3}$	eV^2	MIN	IOS		ム大湖 Data 2 UN WINOS 測定器
$\sin^2 \theta_{23}$	0.50 ± 0.00	0.063		SK	atm		735km № remitté
θ ₁₃ は?					m		m m
$sin^22\theta_{13}$	< 0.15			/-	ν_3		$\Delta m_{\rm SUN}^2$
							ν_1
天体ニュー	トリノ		$\Delta m_{ m AT}^2$	FM ($\rangle \Delta m_{I}^{2}$
ニュートリノ源	太陽	大気	超亲	斤星			
発生場所	太陽中心	地球大気	超新星	星中心	ν_2		
種類	ν_e	$ u_e, \nu_\mu, \bar{\nu}_e, \bar{\nu}_\mu $	$ u_e, \bar{\nu} $	ν_e, ν_x	$\left \Delta m_{\rm St}^2 \right $	JN	/
エネルギー	$\lesssim 10 { m MeV}$	$\gtrsim 200 \text{ MeV}$	$10 \sim 7$	0 MeV	ν_1		ν_3
共鳴	1 回	なし	2	Ħ	1		I
伝播距離	1 A U	数 km	10] (銀河	KDC 山心)			
			(如代山	ייטי די	nal"		"inverted"

arXiv: hep-ph/0405172v6 (2007)

(この測定にもっとも貢献

いままでの振動実験の結果のまとめ Kamland(日本) arXiv: hep-ph/0405172v6 (2007) (この測定にもっとも貢献 中心値 $\pm 1\sigma$ した実験) 1000t 重水 Δm_{21}^2 (7.6 ± 0.2) 10⁻⁵ eV² **KamLAND** MINOS実験 $\sin^2 \theta_{12} \quad 0.32 \pm 0.023$ SNO (加速器) 五大湖 シカゴ $|\Delta m_{31}^2|$ (2.4 ± 0.15) 10⁻³ eV² MINOS MINOS 測定器 (総重量 5.4kton) $\sin^2 \theta_{23} \quad 0.50 \pm 0.063$ SK atm 735km 未解決問題: θ_{13} t? ✓1,3の質量階層 $\sin^2 2\theta_{13} < 0.15$ ✓ θ13 は上限値 <u>解決策:</u>次世代実験(T2K etc) 天体ニュートリノ $\Delta m^2_{\rm ATM}$ **Pros: controllable** ニュートリノ源 太陽 大気 超新星 Cons: small signal 発生場所 太陽中心 地球大気 超新星中心 種類 (high accuracy) ν_e $u_e, u_\mu, \overline{ u}_e, \overline{ u}_\mu$ $u_e, \overline{\nu}_e, \nu_x$ エネルギー $\leq 10 \text{ MeV}$ $\gtrsim 200 \text{ MeV}$ $10 \sim 70 \text{ MeV}$:超新星ニュートリノ 共鳴 なし 1 日 2 回 Pros: full conversion 伝播距離 1 A U 数 km 10kpc (銀河中心) **Cons: totally uncontollable**

Super-Kamiokande:Water Cherenkov Detector 50,000 Tons of Ultra Pure Water

$$\overline{\nu_e}p \to e^+n \longrightarrow \text{Dominant}$$

SN1987Aから我々が得た教訓

(see textbook by Fukugita & Yanagida)

SN1987A

Coined the first detection outside our Galaxy

Confirmed the basis of our SN theory

Huge energy release E_B ~ GM²/R ~ 10⁵³ erg

Sato & Suzuki (PRL)1987

✓ Not statistically enough to tell about the mechanism.
 ☆ For the next SN, 10,000 can be detected.
 ☆ Should be ready for the detailed analysis !

明日、超新星が起こったら?

SN 20XXA !

Large Detectors for Supernova Neutrinos

の超新星ニュートリノから何が分かるか?

可能性1:(1,3)質量階層性、mixing angle

可能性1:(1,3)質量階層性、mixing angle (続き)

Takahashi & Sato (2002,2003) Ando & Sato (2006)

幾つかの検出器での相関解析を行い、素粒子パラメータへフィードバック!

可能性2:ショックの到来シグナル

Tomas et al. (2004) JCAP

<u>可能性3:ニュートリノ シグナルからQCD相転移を探る</u>

Takahara & Sato 88, Sumiyoshi+07, Sagert + 08, Nakazato+08

爆発に失敗した場合

FIG. 2: Neutrino luminosities (a) and (b) and rms-energies (c) measured at 500 km distance for a 10 M_{\odot} progenitor model. The results of the quark EoS *eos1* (thin lines) are compared to the quark for the quark EoS *eos1* (thin lines). A sec-

260 ms after bounce.

✓復活したニュートリノ光度,爆発エネルギー、重力波のシグナル (Yasutake, Kiuchi, and Kotake 2010 (MNRAS)) Bag 定数に敏感。

✓これらのシグナルは、important probe into dense QCD!

<u>可能性3:ニュートリノ シグナルからQCD相転移を探る</u>

Takahara & Sato 88, Sumiyoshi+07, Sagert + 08, Nakazato+08

可能性3:ニュートリノ シグナルからQCD相転移を探る

✓これらのシグナルは、important probe into dense QCD!

Figure 1. Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on $S_{\chi}B$ patterns.

<u>(Yasutake, Kiuchi, and Kotake 2010 (MNRAS)) Bag 定数に敏感。</u>

✓ 復活したニュート

✓これらのシグナルは、important probe into dense QCD !

まとめ:超新星ニュートリノ

Model dependence of luminosity and energy

まとめ:超新星ニュートリノ

これまでのニュートリノシグナルの理論予言のほとんどは1D

 ✓超新星ニュートリノは、やや不定性大 (ニュートリノパラメータ、環境効果、ニュートリノ自己相互作用)
 ✓爆発メカニズム、multimessenger天文学でインパクト大の潜在性

<u>Multi-messenger 天文学を見据えた研究へ</u>

<u>MHD爆発の場合</u>

Multi-messenger 天文学を見据えた研究へ

<u>MHD爆発の場合</u>

<u>Multi-messenger 天文学を見据えた研究へ</u>

<u>MHD爆発の場合</u>

(Kotake +11) まとめ: 超新星からのマルチメッセンジャー

Messenger Mechanism	Gravitational Waves	Neutrinos	Photons (nucleosynthesis)
Canonical rotation Neutrino-heating mechanism Rapid rotation	Stochastic (Convection & SASI)	Stochastic (Convection & SASI)	<u>v p process</u> <u>Anisotropic explosive</u> <u>nucleosynthesis</u>
	Excess for equator (Spiral SASI modes)	Polar excess	?
fails: black-hole forming	Burst signals (bounce & BH formation)	Disappearing signals	<u>No photon (?)</u>
MHD mechanism	Burst & tail (rapid rotation + magnetic fields)	• <u>Anisotropy in SK</u> <u>events</u> (MSW effect) • <u>v</u> _e bursts (RSF)	 <u>r-process cites</u> ? <u>Path to</u> <u>hypernovae</u> ?

(Kotake +11) まとめ: 超新星からのマルチメッセンジャー

まとめ: 超新星からのマルチメッセンジ(Kotake+11)

Multi-messenger astronomy of SN will be highly interesting (although challenging!) in the next decades.
 Multi-dimensionality (convection, SASI, rotation, B-fields) holds a key to bridge the SN theory (incl. nuclear theory) and these multi-messenger observation.

N

