目次

- 基底状態の記述
 平均場方程式の導出
 計算の方法
 例:分子と原子核
- 2.時間依存問題への拡張 低エネルギー原子核衝突 線形応答と光吸収:分子と原子核
- 3. 配位混合計算 -¹²C原子核を例に-
- 4. 光と物質の相互作用を記述する大規模計算 戦略プログラム分野2の課題として

軽い原子核のクラスター相関

¹²Cを3つのα粒子に分解するのに必要なエネルギーは7.27 MeV

cf: 16.0 MeV 陽子分離エネルギー 18.7 MeV 中性子分離エネルギー

クラスター構造

池田図

Fig. 1. The Ikeda diagram which shows the subunits of the possible molecule-like structures expected to appear near the respective threshold energies for the break-up into subunit nuclei. The threshold energies are written in parentheses.

 0_2^+ state (7.65 MeV)

- F. Hoyleにより、重元素生成に必要だとして存在が予言される(1952)。 後に実験的に見つかる。
- 3つのα粒子がボーズ凝縮した状態として理解できる。

Tohsaki, Horiuchi, Schuck, Roepke, PRL87, 192501 (2002). Funaki, Tohsaki, Horiuchi, Schuck, Roepke, PRC67, 051306 (2003).

$$\Phi(\vec{r}_1,\cdots,\vec{r}_{12}) = A \left| \prod_{i=1,3} f(\vec{R}_i) \phi(\vec{r}_1,\cdots,\vec{r}_4) \phi(\vec{r}_5,\cdots,\vec{r}_8) \phi(\vec{r}_9,\cdots,\vec{r}_{12}) \right|$$

トリプルアルファ反応率を巡る最近の論争(宣伝)

02+状態や他の状態を記述する様々な試みが進行中

Green's function Monte Carlo starting with realistic NN force (R.B. Wiringa, as of 2010)

Anti-symmetrized molecular dynamics (Kanada-En'yo)

Monte-Carlo no-core shell model In progress (Abe, Otsuka et.al)

変分モンテカルロ法による原子核の第一原理計算 (Argonne National Lab.の理論グループ)

①なるべく現実的な核力から出発して ②正確にシュレディンガー方程式を解く

$$H = \sum_{i} -\frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < j} v(x_i, x_j)$$
$$H \Psi_n = E_n \Psi_n$$

設模型	反対称化分子動力学(AMD)			
$\Psi = \sum_{k_1 k_2 \cdots k_N} c_{k_1 k_2 \cdots k_N} \Phi_{k_1 k_2 \cdots k_N} \qquad \text{inc} $	$\Psi = \sum_{k_1 k_2 \cdots k_N} c_{k_1 k_2 \cdots k_N} \Phi_{k_1 k_2 \cdots k_N} \qquad \qquad \texttt{$\texttt{inc} X \texttt{I} \texttt{I} \texttt{I} \texttt{I} \texttt{I} \texttt{I} \texttt{I} \texttt{I}$			
$\Phi_{k_1k_2\cdots k_N}(r_1, r_2, \cdots, r_N) = \frac{1}{\sqrt{N!}} \det\{\phi_{k_1}(\vec{r}_{i_1})\phi_{k_2}(\vec{r}_{i_2})\cdots\phi_{k_N}(\vec{r}_{i_N})\}$	$\Phi_{k_1k_2\cdots k_N}(r_1, r_2, \cdots, r_N) = \frac{1}{\sqrt{N!}} \det\{\phi_{k_1}(\vec{r}_{i_1})\phi_{k_2}(\vec{r}_{i_2})\cdots\phi_{k_N}(\vec{r}_{i_N})\}$			
$k_1 \le k_2 \le \dots \le k_N \le k_{max}$ 3次元調和振動子波動関数から	$\phi_k(\vec{r}) = \exp\left[-\nu\left(\vec{r} - \frac{\vec{Z}_k}{\sqrt{\nu}}\right)^2\right]$			
作られるSlater行列式を里ね合わせる。	コヒーレント状態から作られるSlater 行列式を重ね合わせる。 Z _k も変分パラメータとする。			

このままではパリティ・角運動量の固有状態にならないので、射影する。 $P_{MK}^{J} \Phi = P_{MK}^{J} \propto \int d\Omega D_{MK}^{J^{*}} (\alpha \beta \gamma) e^{-iJ_{z}\alpha} e^{-iJ_{y}\beta} e^{-iJ_{z}\gamma}$

Skyrme-Hartree-Fock法による基底状態計算

結合エネルギー	(MeV) [SLy4]

	¹² C	¹⁶ O	²⁰ Ne	
E(exp)	-92.16	-127.61	-160.65	
E(cal)	-90.61	-128.49	-157.18	?体力のスピン・動道
E(cal)/A	-7.55	-8.03	-7.86	相互作用の寄与
E(spin-orbit)	-21.12	-0.95	-9.48 🖛	$= iW_0 \left(\vec{\sigma}_i + \vec{\sigma}_j\right) \cdot \vec{k} \times \delta\left(\vec{r}_i - \vec{r}_j\right) \vec{k}$

虚時間法で計算を行うと、その途中に様々なクラスター状態が現れる

- 初期波動関数は、ガウス波束(中心は乱数で決める)
- 虚時間法による基底状態計算

虚時間法で計算を行うと、その途中に様々なクラスター状態が現れる

- 初期波動関数は、ガウス波束(中心は乱数で決める)
- 虚時間法による基底状態計算

配位混合計算: 虚時間法計算の途中に現れる波動関数を 重ね合わせる。

さまざまな初期波動関数から 虚時間計算を行い、途中に現れる 波動関数を保存する。

典型的に50個程度。

$$\Psi = \sum_{n} c_{n} \Phi_{n}$$
$$\Phi_{n} = \frac{1}{\sqrt{N!}} \det \left\{ \phi_{i}^{(n)}(x_{j}) \right\}$$

Example of selected Slater determinants for ¹²C

"WF_F_SD001X.out" u 1:2:3	'WF_F_SD002Z.out' u 1:2:3	"WF_F_SD003Y.out" a 1:2:3	WF_F_SD004Z.out u 1:2:3	'WF_F_SD005Z.out' u 1:2:3	WF_F_SD006Z.out u 1:2:3	WF_F_SD007Z.out u 1:2:3	"WF_F_SD006X.out" u 1:2:3	"WF_F_SD009X.out" u 1:2:3
Wit _ Shaut's of u real	0				WE JE SOULS and In 28	0	<u> </u>	
WF. = Attack: a v*n 122	W F. Sowe of the 122		WE # 8/1509/5.04% 1 1212				erel WF = statestate	
WR		WP. B. Shauck of a large	WPL = Shasticat n trans		WP_R_200587 s.r.r at 263		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00	101 F 30002000 - 1120	WE F. 2028/Prom. 1122		4 3 0 3 4 4 5 2 2 2 2 2 2 2 2 2 2 3 4 3 4 2 4 3 4 4 5 4 4 5 4 4 5 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	WE F. 60010/wer (12)			
-8 -6 -4 -2 0 2 4 6 8 x	-8 -6 -4 -2 0 2 4 6 8 x	-8 -6 -4 -2 0 2 4 6 8 z	-8 -6 -4 -2 0 2 4 6 8 x	-8 -6 -4 -2 0 2 4 6 1 z	3-8 -6 -4 -2 0 2 4 6 8 y	-8 -6 -4 -2 0 2 4 6 8 z	-8 -6 -4 -2 0 2 4 6 8 x	13

パリティと角運動量の射影

角運動量射影演算子

$$\hat{P}_{MK}^{J} = \frac{2J+1}{8\pi^{2}} \int d\Omega D_{MK}^{J*} \hat{R}(\Omega)$$

 $(\hat{R} = e^{-i\alpha \hat{J}_{z}} e^{-i\beta \hat{J}_{y}} e^{-i\gamma \hat{J}_{z}})$
パリティ射影の演算子
 $\hat{P}^{\pm} = \frac{1}{2}(1+\hat{P}_{r})$

 $\hat{\mathbf{P}}_{MK}^J \hat{\mathbf{P}}^{\pm} | \Phi_n \rangle$

射影した後の空間で、ハミルトニアンを対角化する。 $\left\{ h_{iK,jK'}^{(\pm)} - E^{J(\pm)} n_{iK,jK'}^{(\pm)} \right\} g_{jK'} = 0$ $\left[\begin{array}{c} h_{iK,jK'} \equiv \left\langle \Psi_i \right| \widehat{H} \ \widehat{P}_{KK'}^J \widehat{P}^{(\pm)} \left| \Psi_j \right\rangle \\ n_{iK,jK'} \equiv \left\langle \Psi_i \right| \ \widehat{P}_{KK'}^J \widehat{P}^{(\pm)} \left| \Psi_j \right\rangle \end{array} \right]$ エネルギー密度が与えられている場合に、どのようにして行列要素を求めるのか? $h_{iK,jK'} \equiv \left\langle \Psi_i \middle| \widehat{H} \; \widehat{P}^J_{KK'}, \widehat{P}^{(\pm)} \middle| \Psi_j \right\rangle$

密度を遷移密度に置き換える。

$$\frac{\langle \Phi | H | \Psi \rangle}{\langle \Phi | \Psi \rangle} \Rightarrow \int d\vec{r} H[\rho_{\Phi\Psi}, \tau_{\Phi\Psi}, J_{\Phi\Psi}] \qquad \rho_{\Phi\Psi}(\vec{r}) = \langle \Phi | \hat{\rho}(\vec{r}) | \Psi \rangle$$

$$H(\vec{r}) = \frac{\hbar^2}{2m} \tau(\vec{r}) + \frac{1}{2} t_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{4} (t_1 + t_2) \rho \tau + \frac{1}{8} (t_2 - t_1) \left(\rho_n \tau_n + \rho_p \tau_p \right) + \frac{1}{16} (t_2 - 3t_1) \rho \Delta \rho + \frac{1}{32} (3t_1 + t_2) \left(\rho_n \Delta \rho_n + \rho_p \Delta \rho_p \right) + \frac{1}{16} (t_2 - t_1) \left(\vec{J}_n^2 + \vec{J}_p^2 \right) + \frac{1}{4} t_3 \rho_n \rho_p \rho + H_C - \frac{1}{2} W_0 \left(\rho \vec{\nabla} \cdot \vec{J} + \rho_n \vec{\nabla} \cdot \vec{J}_n + \rho_p \vec{\nabla} \cdot \vec{J}_p \right)$$

この手続きは、エネルギー密度が演算子(2体力、3体力)から得られている場合は厳密。

そうではない場合(E=p4/3など)には、射影に際してトラブルとなる場合もある。

数値的な側面

空間格子の数: 20x20x20程度。 最も計算時間を要するのは、射影を伴う行列要素の計算 角運動量射影であれば、オイラー角を離散化して積分する。 (α,β,γ) = (18,30,18)

$$h_{iK,jK'} \equiv \langle \Psi_i | \hat{H} \, \hat{P}^J_{KK'} \hat{P}^{(\pm)} | \Psi_j \rangle$$
$$n_{iK,jK'} \equiv \langle \Psi_i | \, \hat{P}^J_{KK'} \hat{P}^{(\pm)} | \Psi_j \rangle$$

典型的に、50個のSlater行列式で 500 core * 10 hours

Slater行列式が非直交であるため、数値的な困難が発生する。

ノルム固有値 $n_{iK,jK'} \equiv \langle \Psi_i | \hat{P}_{KK'}^J \hat{P}^{(\pm)} | \Psi_j \rangle$ (J=0, ij=1-45)

基底関数の非直交性のため、多くの固有値が0に近い。.

計算の収束性(信頼度)を確認するため、異なるSlater行列式の 組を用いた計算で、結果を比較してみる。

¹²Cの構造: 正パリティ

- Skyrme parameter : SLy4
- Total Energy
 CAL: -95.3 MeV
 EXP: -92.1 MeV
 - cf. HF : -90.6 MeV
- Total energy is well reproduced. (correlation energy: 4.7 MeV)

- 基底状態バンドは良く再現できている。
- 2nd 0+ 状態は、3α構造をもっている。
- 3rd 0+ 状態はバンドを形成、直線状の3α構造

¹²Cの構造: 負パリティ

¹²C: 正パリティ

23/14

¹⁶Oの構造: 正パリティ

¹⁶Oの構造: 負パリティ

²⁰Ne の構造: 正パリティ

26/14

²⁰Ne の構造: 負パリティ

