爆発における原子核物理の役割は?

超新星ニュートリノから状態方程式を探る

超新星ニュートリノ

- t_{pb} < 0 sec: 重力崩壊初期~v閉込め
 - 電子捕獲による v_e ~ 10^{51} erg
- t_{pb} ≤ 10 msec
 - 中性子化バースト v_e ~ 10⁵¹ erg
 - 衝撃波通過時に鉄が陽子・中性子に分解
 - 自由陽子による電子捕獲反応
- $t_{pb} = 100 \text{ msec} \sim 1 \text{ sec}$
 - 熱ニュートリノ(6 species) ~ 10⁵³ erg
 - 温められた物質(重力エネルギー→熱エネルギー)
 - 電子陽電子の対消滅
- $t_{pb} = 1 \sec \sim 20 \sec$
 - 内部のνが拡散により流出 ~ 10⁵³ erg
 - 原始中性子星の冷却

超新星ニュートリノ:コアバウンスの頃

~20秒の間に減衰: ニュートリノ拡散時間

From H. Suzuki

超新星爆発時のニュートリノ:昔の例

v平均エネルギーの時間変化

v光度の時間変化

Explosion by Wilson Woosley-Weaver 20M_{solar} _{Woosley et al. ApJ (1994)}

supernova v: average enegy

- Neutrino spectrum
 - $\sigma_{vu/\tau} < \sigma_{ve} < \sigma_{ve}$
 - $E_{vu/\tau} > E_{v\overline{e}} > E_{ve}$
 - $L_{vu/\tau} \sim L_{ve} \sim L_{ve}$
 - Large contrib. from μ/τ

- v_{e} : charged current
- \bar{v}_{e} : charged current
- $v_{\mu/\tau}$, $\bar{v}_{\mu/\tau}$: neutral current $v_i + N \Leftrightarrow v_i + N$
- $e^- + p \Leftrightarrow v_e + n$
- $e^+ + n \Leftrightarrow \bar{v}_{\rho} + p$
- Modified "Fermi"-distribution
 - E_v-dependent

超新星ニュートリノ:予測データ

超新星ニュートリノ:状態方程式の影響

超新星コアでの高温高密度物質

- 重力崩壊時にν閉じ込め(ρ>10¹² g/cm³)
- ニュートリノを含む化学平衡 (cf. μ_v=0 for NS)
 - $e^{-} + p \Leftrightarrow v_e + n$ $\mu_n = \mu_p + \mu_e \mu_v$
 - 陽子の割合が大きい(中性子が少ない)
- - 原子核密度(ρ_0 =3x10¹⁴g/cm³)以上、有限温度

Super-Kamiokande

原始中性子星のニュートリノ冷却

原始中性子星の熱的進化: 冷却の相違

Sumiyoshi et al. A&A (1995), H. Suzuki (2005)

Simulation started from $t_{pb}=0.4$ sec

異なる起源の超新星ニュートリノ

大質量星~20M_{sun}→中性子星

- ・華々しい爆発
- ~20秒間の継続時間
 - 中心からの拡散ニュートリノ
- 光度: exponential decay
 - SN1987A: 11 ν
 - -a next Galactic SN: $10^4\,\nu$

~40M_{sun}→ブラックホール

- ・光では見えない
- ~1秒と短い時間
 - -物質降着によるニュートリノ
- エネルギー・光度が増加
- a Galactic case: $\sim 10^4 v$

Numerical result with Shen-EOS

Numerical result with LS-EOS

Sumiyoshi et al. PRL 2006

超新星ニュートリノの特徴

v平均エネルギーの時間変化

•v放出が途中で停まる

- LS-EOSの場合は短いシグナル • vエネルギー・光度が増加

- 中心コアの密度・温度の増加

Sumiyoshi et al. PRL 2006

ブラックホール

形成のシグナル

内部は非常に高温· 高密度になっている

- ブラックホール形成前に

 密度 > ~3p₀
 温度 > 100 MeV
 を越えている。
- EOSの拡張が必要 - Hyperon, Quarkの出現
- ブラックホール形成までの ν シグ ナルでEOSを探る可能性

Sumiyoshi et al. ApJ 2007

ハイペロン/クォークの出現を探るには

• 原始中性子星の形成と進化を調べる

・中性子量 μ_n↑ or 密度・温度 ρ, T↑

• 原子核・ハドロン物理 at (ρ , T, Y_p) – 状態方程式(EOS)・ニュートリノ反応率 • 新自由度の出現を取り込んだEOSテーブル $E = E_N + E_\Lambda + \dots$ $\mu_\Lambda = \sqrt{k_F^2 + m_\Lambda^{*2}} + U_\Lambda$ vs μ_n $p = p_N + p_\Lambda + \dots$ $\rightarrow U_\Lambda m_\Lambda^*$:ハイペロン相互作用

状態方程式テーブルの系統的な構築

• 広い範囲の密度・温度・組成

drop model

- 一貫した枠組みで取り扱う
- 実験データによるチェック

• 熱力学量(E, p, X_i , μ_i , S) $\rho=10^5 \sim 10^{15} \text{ g/cm}^3$ T=0~100 MeV $Y_p=0\sim0.5$

1991, NPA

EOS table	Framework	Nucleons	Hyperons	Quarks	Ref.
Shen EOS	RMF	n, p, α , nuclei	-	-	Shen 1998, NPA
Hyperon EOS	RMF in SU(3)	n, p, α , nuclei	Λ, Σ, Ξ	-	Ishizuka 2008, JPG
Quark EOS	RMF + MIT bag model	n, p, α , nuclei	-	u, d, s	Nakazato 2008, PRD
LS-EOS	Ext of liquid	n n α nuclei	_	_	Lattimer

Sumiyoshi et al., ApJL (2009)

 $t_{pb}=0, 0.3, 0.5, 0.65, 0.68s$

0.5秒でハイペロンが出現

Sumiyoshi et al., ApJL (2009)

