目次

✓第1回目 高エネルギー天体物理の基礎 「星の進化、超新星爆発の標準理論」

✓第2回目 シミュレーション研究最前線 「爆発天体現象のエンジンは解明されたか?」

✓第3回目 ニュートリノ輻射流体数値計算法 ガンマ線バーストの中心天体

✓第4回目 マルチメッセンジャー天文学に向けて (重力波・ニュートリノ・多波長電磁波観測) 「天体物理・素核物理へのフィードバック」

## Outline

§2-1「球対称モデルの問題点」
✓観測からのアプローチ
✓理論からのアプローチ

§2-2 「<u>多次元シミュレーション研究最前線</u>」 (爆発天体現象のエンジンは解明されたか?)

§3-1 流体基礎方程式の導出(時間が許す限り)

# § **2-1**

## **球対称モデルの問題点** 「超新星モデラーたちの苦闘の歴史」

## この20年を振り返って(1/3)

<u>Neutrino-heating mechanism (Wilson '82, Bethe'85) in spherical</u> <u>symmetry fails to explode massive stars with iron cores.</u>





・重力崩壊型超新星の撮像

- (Wang+.01,02)
- Multidimensional explosions are favorable for reproducing the synthesized elements. (Nagataki+.97, Maeda+.03, Kifonidius+.07, Maeda+08...)

### 多次元の効果が本質的!

爆発の多次元性を支持する観測

図提供:前田啓一さん、田中雅臣さん(IPMU)

✓超新星の後期分光観測





爆発の多次元性を支持する観測

✓超新星の後期分光観測



✓ bipolar explosion & 非軸対称:2D・3D効果が重要

図提供:前田啓一さん、田中雅臣さん(IPMU)

2002ap

2004gq

2006ck

2005nb

2004fe

2006

爆発の多次元性を支持する観測

✓超新星の後期分光観測





✓ bipolar explosion & 非軸対称:2D・3D効果が重要

## この20年を振り返って(1/3)

<u>Neutrino-heating mechanism (Wilson '82,Bethe'85) in spherical</u> symmetry fails to explode massive stars with iron cores.





・重力崩壊型超新星の撮像

- (Wang+.01,02)
- Multidimensional explosions are favorable for reproducing the synthesized elements. (Nagataki+.97, Maeda+.03, Kifonidius+.07, Maeda+08...)



## この20年を振り返って(2/3)

・この分野のメインストリーム:1次元球対称 but ...

<u>より詳細なマイクロ物理・高精度なニュートリノ輸送法で!</u>

#### Neutrino reactions in the supernova core

|        | Reaction                              |                |                               | References Sophistications                         |  |
|--------|---------------------------------------|----------------|-------------------------------|----------------------------------------------------|--|
|        | VG±                                   | =              | VE±                           | Mezzacappa & Bruenn (1993a)                        |  |
|        |                                       |                |                               | Cernohorsky (1994)<br>Horowitz (1997)              |  |
|        | v A                                   | +              | vA                            |                                                    |  |
| narged |                                       |                |                               | Bruenn & Mezzacappa (1997)                         |  |
| urrent | vN                                    | =              | νN                            | Burrows & Sawyer (1998)                            |  |
|        | v <sub>e</sub> n                      | +              | e <sup>-</sup> p              | Burrows & Sawyer (1999)<br>Burrows & Sawyer (1999) |  |
|        | $\overline{v_e} p$                    | +              | e <sup>+</sup> n              |                                                    |  |
|        | ve A'                                 | +              | e <sup>-</sup> A              | Bruenn (1985), Langanke et al. (2003)              |  |
|        |                                       |                |                               | Mezzacappa & Bruenn (1993b)                        |  |
|        | vv                                    | =              | e <sup>-</sup> e <sup>+</sup> | Bruenn (1985), Pons et al. (1998)                  |  |
|        | vv NN                                 | +              | NN                            | Hannestad & Raffelt (1998)                         |  |
|        | $v_{\mu,\tau}\overline{v}_{\mu,\tau}$ | <del>, 1</del> | VeVe                          | Buras et al. (2003)                                |  |
|        | $\nabla_{\mu,\tau} \nabla_e$          | ≑              | $\nabla_{\mu,\tau} \nabla_e$  | Buras et al. (2003)                                |  |

### ニュートリノと電子のinelastic scattering

$$\nu_e + e^{\pm} \rightleftharpoons \nu_e + e^{\pm}$$

(Bruenn & Mezzacappa '93,'97 ApJ)

### Down-scattering of energy neutrino

Mean neutrino energy <u>neutrino</u>







## この20年を振り返って(2/3)

・この分野のメインストリーム:1次元球対称だが、
 より詳細なマイクロ物理&高精度なニュートリノ輸送法で!

#### Neutrino reactions in the supernova core

|                                               |                                                                |                |                               | Oankistiantiana                       |  |
|-----------------------------------------------|----------------------------------------------------------------|----------------|-------------------------------|---------------------------------------|--|
|                                               | Reaction                                                       |                | _                             | References Sophistications            |  |
| $v e^{\pm} \rightleftharpoons v e^{\pm}$ Mezz |                                                                | VE±            | Mezzacappa & Bruenn (1993a)   |                                       |  |
|                                               |                                                                |                |                               | Cernohorsky (1994)                    |  |
|                                               | vA                                                             | <del>_</del>   | vA 🛛                          | Horowitz (1997)                       |  |
| harge                                         | 4                                                              |                |                               | Bruenn & Mezzacappa (1997)            |  |
| curren                                        | t vN                                                           | =              | $\nu N$                       | Burrows & Sawyer (1998)               |  |
|                                               | v <sub>e</sub> n                                               | <del>, 1</del> | е¯р                           | Burrows & Sawyer (1999)               |  |
|                                               | $\overline{v_e}p$                                              | +              | $e^+n$                        | Burrows & Sawyer (1999)               |  |
|                                               | ve A'                                                          | ;≓             | e <sup>-</sup> A              | Bruenn (1985), Langanke et al. (2003) |  |
|                                               |                                                                |                |                               | Mezzacappa & Bruenn (1993b)           |  |
|                                               | vv                                                             | #              | e <sup>-</sup> e <sup>+</sup> | Bruenn (1985), Pons et al. (1998)     |  |
|                                               | vv NN                                                          | <del>; +</del> | NN                            | Hannestad & Raffelt (1998)            |  |
|                                               | $v_{\mu,\tau}\overline{v}_{\mu,\tau}$                          | =              | $v_e \overline{v_e}$          | Buras et al. (2003)                   |  |
|                                               | $(\widehat{\mathcal{V}}_{\mu,\tau},\widehat{\mathcal{V}}_{e})$ | ⇒              | $\nabla_{\mu,\tau} \nabla_e$  | Buras et al. (2003)                   |  |

### <u>原子核への電子捕獲率の見直し(1/3)</u>



(Langanke et al. '03 PRL, Hix et al. '04)



• Fuller, Fowler, Neuman in the 80's

GT Transition to lowest excited state was taken into account . N=40 shell closure.

## 原子核への電子捕獲率の見直し(2/3)



(Langanke et al. '03 PRL, Hix et al. '04)

(爆発しにくくなるセンス)



- In the reaction rates by Fuller, Fowler, Neuman in the 80's, the GT transition is assumed to be blocked when N > 40.
- SMMC simulation (+RPA model) reveals the unblocking mechanism.

lepton

⇒ 電子捕獲率up





## 原子核への電子捕獲率の見直し(2/3)



(Langanke et al. '03 PRL, Hix et al. '04)





 In the reaction rates by Fuller, Fowler, Neuman in the 80's, the GT transition is assumed to be blocked when N > 40.

- SMMC simulation (+RPA model) reveals the

Tasks for improvements..

✓ Reaction rates are only for 45 < A < 112</li>
 A ~ 200 is needed to follow a full evolution in the SN simulation.
 ✓ Their reaction rates are not open... (open to only one group)

Improved estimate of electron capture rates on nuclei during stellar core collapse

NPA(2010)

A. Juodagalvis<sup>a</sup> K. Langanke<sup>b,c,d</sup> W.R. Hix<sup>e</sup> G. Martínez-Pinedo<sup>b</sup> J.M. Sampaio<sup>f</sup>





✓ 2700核種に関してweak interaction rate を計算
 ✓ これまでのレートとほとんど変わらない
 ✓ データは、リクエストに応じてオープン。

#### 原子核への電子捕獲率の見直し(3/3)



### <u>原子中性子星内部で重要になってくる反応</u>

#### これまでの話

| Reaction                              |   |                               | Keferences                            |
|---------------------------------------|---|-------------------------------|---------------------------------------|
| VE±                                   | ⇒ | VE±                           | Mezzacappa & Bruenn (1993a)           |
|                                       |   |                               | Cernohorsky (1994)                    |
| v A                                   | ⇒ | vA                            | Horowitz (1997)                       |
|                                       |   |                               | Bruenn & Mezzacappa (1997)            |
| $\nu N$                               | ⇒ | vN                            | Burrows & Sawyer (1998)               |
| v <sub>e</sub> n                      | ≑ | e <sup>-</sup> p              | Burrows & Sawyer (1999)               |
| $\overline{v_e} p$                    | ⇒ | e <sup>+</sup> n              | Burrows & Sawyer (1999)               |
| ve A'                                 | ⇒ | e <sup>-</sup> A              | Bruenn (1985), Langanke et al. (2003) |
|                                       |   |                               | Mezzacappa & Bruenn (1993b)           |
| vv                                    | ≑ | e <sup>-</sup> e <sup>+</sup> | Bruenn (1985), Pons et al. (1998)     |
| vv NN                                 | ⇒ | NN                            | Hannestad & Raffelt (1998)            |
| $v_{\mu,\tau}\overline{v}_{\mu,\tau}$ | ⇒ | $v_e \overline{v_e}$          | Buras et al. (2003)                   |
| $\nabla_{\mu,\tau} \nabla_e$          | ≓ | $\nabla_{\mu,\tau}\nabla_{e}$ | Buras et al. (2003)                   |
|                                       |   |                               |                                       |

ここからの話





### <u> 核子・核子間同士のnuclear interaction の効果</u>

Yamada & Toki, Phys.Rev. C61 (2000) 015803

(e.g.,Burrows & Sawer '98,'99)

0.2

0.4

.0.3

$$\nu + N \rightleftharpoons \nu + N$$

$$R(q^{in}, q^{out}) = \frac{G_F^2}{2} K_{\alpha\beta}(q^{in}, q^{out}) S_N^{\alpha\beta}(k).$$

$$S_N^{\alpha\beta}(k) = \int d^4x e^{ikx} \langle J_N^{\alpha}(x) J_N^{\beta}(0) \rangle.$$

$$Idynamical structure function$$

$$R_1(k) \sim h_F^2 \int d^4x e^{ikx} \langle J_N^{\alpha}(x) \rho_N(0) \rangle.$$

$$Idynamical structure function$$

$$R_1(k) \sim h_F^2 \int d^4x e^{ikx} \langle J_N^{\alpha}(x) \rho_N(0) \rangle.$$

$$Idynamical structure function$$

$$Idynamical structure function$$

$$R_1(k) \sim h_F^2 \int d^4x e^{ikx} \langle J_N^{\alpha}(x) \rho_N(0) \rangle.$$

$$Idynamical structure function$$

$$Idy$$



反電子型ニュートリノ:  $\mathcal{O}(1/m_N)$  cross section を下げるセンス =>爆発にXのセンス

マイクロ物理の精密化のまとめ

この分野のメインストリーム:1次元球対称だが、
 より詳細なマイクロ物理・高精度なニュートリノ輸送法で!

| eutrino reactions in the supernova core           |                      |                                     |                                       |              |
|---------------------------------------------------|----------------------|-------------------------------------|---------------------------------------|--------------|
| Reaction                                          |                      |                                     | References                            | explosion    |
| ve±                                               | ≓                    | VE±                                 | Mezzacappa & Bruenn (1993a)           | ×            |
|                                                   |                      |                                     | Cernohorsky (1994)                    |              |
| vA                                                | <del>; `</del>       | vA                                  | Horowitz (1997)                       | $\times$     |
|                                                   |                      |                                     | Bruenn & Mezzacappa (1997)            |              |
| v N                                               | <del>; `</del>       | vN                                  | Burrows & Sawyer (1998)               | $\bigcirc$   |
| v <sub>e</sub> n                                  | ⇒                    | e⁻p                                 | Burrows & Sawyer (1999)               |              |
| ve p                                              | $\Rightarrow$        | e <sup>+</sup> n                    | Burrows & Sawyer (1999)               |              |
| ve A'                                             | <del>, 1</del>       | e <sup>-</sup> A                    | Bruenn (1985), Langanke et al. (2003) | $\times$     |
|                                                   |                      |                                     | Mezzacappa & Bruenn (1993b)           | (smaller Ye) |
| vv                                                | $\Rightarrow$        | e^ e+                               | Bruenn (1985), Pons et al. (1998)     | O            |
| VV NN                                             | ⇒                    | NN                                  | Hannestad & Raffelt (1998)            | $\bigcirc$   |
| $v_{\mu,\tau}\overline{v_{\mu,\tau}}$             | $\rightleftharpoons$ | $v_e \overline{v_e}$                | Buras et al. (2003)                   | $\cap$       |
| $\widehat{\nabla}_{\mu,\tau}\widehat{\nabla}_{e}$ | ≓                    | $\nabla_{\mu\tau}\nabla_{\epsilon}$ | Buras et al. (2003)                   | (larger Lv)  |

マイクロ物理の精密化のまとめ

・この分野のメインストリーム:1次元球対称だが、
 より詳細なマイクロ物理・高精度なニュートリノ輸送法で!

| Neutrino reactions in the supernova core |                   |                |                  |                                       | Good(O) or<br>bad(×) for |
|------------------------------------------|-------------------|----------------|------------------|---------------------------------------|--------------------------|
|                                          | Reaction          |                |                  | References                            | explosion                |
|                                          | Vet               | #              | VE±              | Mezzacappa & Bruenn (1993a)           | ×                        |
|                                          |                   |                |                  | Cernohorsky (1994)                    |                          |
|                                          | vA                | <del>; +</del> | vA               | Horowitz (1997)                       | ×                        |
|                                          |                   |                |                  | Bruenn & Mezzacappa (1997)            | $\cap$                   |
|                                          | $\nu N$           | <del>, 1</del> | νN               | Burrows & Sawyer (1998)               | $\cup$                   |
|                                          | $v_c n$           | =              | e_p              | Burrows & Sawyer (1999)               | —                        |
|                                          | v <sub>e</sub> p  | =              | e <sup>+</sup> n | Burrows & Sawyer (1999)               | $\checkmark$             |
|                                          | v <sub>e</sub> A' | =              | e A              | Bruenn (1985), Langanke et al. (2003) | (cmaller Ve)             |
|                                          | _                 |                |                  | Mezzacappa & Bruenn (19936)           | (smaller re)             |

✓ベストを尽くして1Dでは爆発しないのが現状。
 ✓パスタ・EOS(第1回)、非線形ニュートリノ振動の効果
 (第4回)等、マイクロ物理の精密化の余地は残されている。



#### <u>多次元シミュレーションでニュートリノ加熱駆動爆発をおこすのに必要な要素</u>

### √ニュートリノ輻射パート:

Neutrino heating depends on neutrino luminosities, spectra, and angular distributions.

√流体パート:



$$\dot{\epsilon} = \frac{X_n}{\lambda_0^a} \frac{L_{\nu_c}}{4\pi r^2} \langle E_{\nu_c}^2 \rangle \langle \frac{1}{\mathcal{F}} \rangle + \frac{X_p}{\bar{\lambda}_0^a} \frac{L_{\bar{\nu}_c}}{4\pi r^2} \langle E_{\bar{\nu}_c}^2 \rangle \langle \frac{1}{\bar{\mathcal{F}}} \rangle$$

 $\overline{f(t,r,\theta,\phi,E},\theta_p,\phi_p)$ 

$$f(t,r,\theta,\phi,E,\theta_p,\phi_p)$$
 "MGMA"(6 dimensional problem)  
 $E_R(t,r,\theta,\phi,E) = \int d\theta_p \, d\phi_p \, f$  "MG"(Multi energy-Group:エネルギー

MG"(Multi energy-Group:エネルギー群) ) **Or IDS**(isotropic diffusion source approximation) "Gray (no energy-dependence)"

#### (詳細については第3回目で)

自転,磁場を正確に扱うには3D計算が不可欠!

 $E_{R}(t,r,\theta,\phi) = \int dE \, d\theta_{R} \, d\phi_{R} \, f$ 

究極的には3次元一般相対論的MHD+ニュートリノ輻射輸送計算が必要





### 球対称モデルを越えて。

### §2-2 <u>非(球)対称超新星爆発シミュレーションの現状</u>

取り組むべき問題は、

何が非対称性をつくるのか?

非対称性のニュートリノ加熱メカニズムに及ぼす効果は?

非球対称性の候補



✓ 停在衝撃波の不安定性:SASIの重要性

✓ 原始中性子星におけるG-mode excitation

✓星の持つ自転

✓星の持つ磁場

最近の話題なので、シミュレーション例を 取り上げながら説明。

### 多次元性の起源-その1:対流

gr

### 星の中で対流が起きる2つの条件



流体素片が対流不安定(上昇を続ける)な条件

レプトンの負の勾配: negative leptongradient convection)  $dY_L/dr < 0$ 

### 超新星の何処で対流が起こるか?



## <u>1990年代:対流の効果</u>



## Shock revival に必要な臨界ニュートリノ光度

(Burrows and Goshy '93, ApJ, Yamasaki & Yamada 05,06, ApJ)



## Shock revival に必要な臨界ニュートリノ光度

(Burrows and Goshy '93, ApJ, Yamasaki & Yamada 05,06, ApJ)



Murphy & Burrows (2008) ApJ

### 2DでFull calculation (type II)の計算を行ってみると・

Buras et al. (03) PRL

#### Time evolution of shock in 1D and 2D models





色;エントロピー

### <u>2DでFull calculation (type II) の計算を行ってみると・</u>

Buras et al. (03) PRL

#### Time evolution of shock in 1D and 2D models

| 250                  | 180.1ms               | 225.7ms                      |
|----------------------|-----------------------|------------------------------|
| Volume 90, Number 24 | PHYSICAL REVIEW LETTE | R S week ending 20 JUNE 2003 |

#### Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?

R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany (Received 7 March 2003; published 19 June 2003)

Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-ofthe-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

巴, 上ノトロヒー

## ✓ 2003年当時、2Dの方が1Dよりショックが外側に 伝搬するが、爆発はしない。






多次元モデルのキーワード: SASI"

Blondin et al. 2003 ApJ (pioneerling) Scheck et al. 2004,06 A&A Ohnishi, Kotake, Yamada 2006, ApJ Foglizzo et al. 2007 ApJ...

What is SASI ?
 "Standing Accretion Shock Instability"

バウンス後、 失速した衝撃波

l = 1,2 が卓越した stalled shock の振動

 SASIは爆発のメカニズムの鍵
 ゲイン領域を落下する タイムスケールが伸びる。
 (非動径方向の運動により)

✔ ゲイン領域が球対称モデルより広がる。

※星の水平面対称性を課したシミュレーション ではフルにSASIは追えない。



多次元超新星モデル最前線

|      |                      | initial<br>setting | symmetry | SASI   | v-driven<br>convection | NS<br>g-modes |
|------|----------------------|--------------------|----------|--------|------------------------|---------------|
| 2003 | Blondin et al.       | stalled            | 2D axi.  | Х      | -                      | -             |
| 2004 | Scheck et al.        | collapse           | 2D axi.  | Х      | Х                      | -             |
| 2006 | Scheck et al.        | collapse           | 2D axi.  | Х      | Х                      | -             |
|      | Burrows et al.       | collapse           | 2D axi.  | Х      | Х                      | Х             |
|      | Ohnishi et al. 🛛 🔍   | stalled            | 2D axi.  | Х      | Х                      | -             |
|      | Blondin & Mezzacappa | stalled            | 2D axi.  | Х      | -                      | -             |
| 2007 | Blondin & Mezzacappa | stalled            | 3D       | spiral | -                      | -             |
|      | Kotake et al.        | stalled            | 2D axi.  | Х      | Х                      | -             |
|      | Burrows et al.       | collapse           | 2D axi.  | Х      | Х                      | Х             |
|      | Blondin & Shaw       | stalled            | 2D eq.   | spiral | -                      | -             |
|      | Fryer & Young        | collapse           | 3D       | Х      | Х                      | ?             |
| 2008 | Scheck et al.        | collapse           | 2D axi.  | Х      | Х                      | -             |
|      | lwakami et al. 🛛 🔍   | stalled            | 3D       | Х      | Х                      | -             |
| -    | Marek & Janka        | collapse           | 2D axi.  | Х      | Х                      | weak          |
| -    | Ott et al.           | collapse           | 2D axi.  | Х      | Х                      | ?             |
| -    | Murphy & Burrows     | collapse           | 2D axi.  | Х      | Х                      | ?             |



http://tpot.jpn.ph/t-pot/program/88 SH/index.html

### SASI = Standing Accretion-Shock Instability のメカニズム

Foglizzo (2008) ApJ

cm/s]

<lue><lue>10<sup>9</sup>

0.4





R [10<sup>7</sup>cm]





最終的には、 大きな揺らぎに成長 (L=1、2 modes) して、振動する

原子中性子星表面





Ohnishi, Kotake, Yamda,06 (ApJ)

### SASI = Standing Accretion-Shock Instability のメカニズム



✓ 飽和のメカニズムなどまだ分かっていない点も多い。

✔ type II 計算への重要な教訓 : <u>「面対称性を外しなさい」</u>



<u>水平面対称性を課したモデル</u> では、SASIをフルに取り込め <u>なかった.</u>



### 2Dニュートリノ加熱メカニズム成功第一例

11.2 M<sub>sun</sub>の親星

Buras et al. 2006 A&A



状態方程式依存性

15 M<sub>sun</sub>の親星

Marek & Janka 2009 A&A



状態方程式依存性

15 M<sub>sun</sub>の親星

Marek & Janka 2009 A&A





## <u>自転, SASI, ニュートリノ加熱メカニズムによる超新星爆発</u>

Suwa, Kotake, Takiwaki, Whitehouse, Liebendoerfer, Sato (10), PASJ

- ✔ Nomoto & Hashimoto (1988) 13 Ms(高速回転 Ω<sub>0</sub>= 2 rad/s)
- ✔状態方程式は Lattimer & Swesty EOS (K=180 MeV)
- ✔ Ray-by-ray 2C approx. Boltzmann transport (第三回目で詳述)

密度 ニュートリノ加熱率



(1)衝撃波の流体不安定性が発達

(2)自転の効果でbipolar explosion

爆発エネルギーの時間発展



☆<u>自転の効果で爆発エネルギーが大きくなる</u> <u>ただまだ10<sup>50</sup> erg(一桁足りない)。</u>

## <u>Why rotation is good?自転による非対称ニュートリノ放射</u>

Kotake, Yamada, Sato (03) ApJ, Kotake et al. (2006)



☆ 2次元の 拡散近似のニュートリノ輻射輸送計算(Multi-Group Flux Limited Diffusion)







## <u>Why rotation is good?自転による非対称ニュートリノ放射</u>

Kotake, Yamada, Sato (03) ApJ, Kotake et al. (2006)



## <u>音波爆発シナリオ (Princeton)</u>

Burrows et al. (2006) ApJ (2D-MGFLD (Multi-Group Flux Limited Diffusion) simulations)

11太陽質量 の星で~600 msec dynamics を追って爆発



## <u>音波爆発シナリオ (Princeton)</u>

Burrows et al. (2006) ApJ (2D-MGFLD (Multi-Group Flux Limited Diffusion) simulations)

11太陽質量 の星で~600 msec dynamics を追って爆発



## Acoustic-driven supernovae? (25太陽質量のモデルまで、爆発可能~10<sup>51</sup>erg (Burrows+07,ApJ)

✓ Objections to "acoustic mechanism"

☆ Little oscillations of PNSs in Garching & Tokyo simulations

(Marek & Janka 09, Suwa, Kotake et al. (10))

Time after bounce [s

0.1

0.2

#### $\bigstar$ Semi-analytic studies predict that ..

It he saturation levels of g-mode oscillation are at most 10<sup>4</sup>[49] erg, much smaller than found in Burrows et al (06) (Weinberg & Quataert (08), ApJ).

there is a severe impedance mismatch between the typical frequency of SASI

(~30Hz) and the excited g-modes (~200~500) Hz. (Yoshida et al. 08, ApJ).

☆ Forcing the PNS oscillations by hand in 2D simulations, no acoustic-driven explosions ! (KK in prep)









0. ms t =

13

- ✓ 13 Ms proge ✓ Numerical ] • Grid: 30 Process
  - Non-rot
- Resolution check needed.
- Peta-flops class supercomputer is soon at hand.







## 3 Dの方が爆発しやすいか? Yes or No! ✓<u>ニュートリノ加熱的には得</u>



### ✓ 流体力学的には損(φ方向に運動エネルギーが渡ってしまう)







(MHDメカニズムに進む前にちょっと) コーヒーブレイク(1/3)



### 初期条件(親星の進化計算)ほんとに正しいの?



### コーヒーブレイク (2/3)

星の進化業界

吉田 敬さん プレゼンファイルより 超新星研究会@国立天文台 2011年

0.2

0.4

Si-28 Mass Fraction

0.6

0.0



Meakin & Arnett (2008) 多次元はFeコア まで追えない(e.g.,

Neon/Carbon

Burning

0 20 40 60 80 100

Net energy generation [1e+13 erg/g/s]

第一回)

Iron

Core

Silicon Oxygen

Burning Burning

.

|                     | Mass loss                                                              | 対流条件                                               | Network<br><sup>12</sup> C(α,γ) <sup>16</sup> O |  |
|---------------------|------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--|
| Umeda               | Vink et al. 01<br>de Jager et al. 88                                   | Schwarzschild                                      | 240(282)核種                                      |  |
| (YU11)              | Nugis & Lamers 00                                                      |                                                    | 1.3(1.5)×CF88                                   |  |
| I CO6               | Vink et al. 01                                                         | Schwarzschild                                      | 282核種                                           |  |
| ローマ大学               | Nugis & Lamers 00                                                      | in H-burning)                                      | Kunz et al. 02                                  |  |
| HMM04<br>ロスアラモス     | Vink et al. 01<br>de Jager et al. 88<br>Nugis & Lamers 00              | Schwarzschild<br>(+overshoot<br>in H & He-burning) | CNO+α-net+QSE+NSE<br>NACRE                      |  |
| WHW02<br>(RH02)     | Kudritzki et al. 89<br>Niewenhuijzen & de Jager 90<br>Hamann et al. 82 | Ledoux+semiconver<br>+overshooting                 | 11.24                                           |  |
| NH88<br>Hashimoto95 | _                                                                      | Schwarzschild                                      | is Ro                                           |  |

### コーヒーブレイク(3/3)



To-do-lists...

- ✓超新星モデラー
- お互いの結果をちゃんと比較すべき ✓進化屋さん

多次元の効果などお願いします。 (両者ともHPCIのターゲットなりうる。)



#### Nomoto & Hashimoto進化モデル



#### Woosley, Heger, Weaver 進化モデル



# Switching gears to MagnetoHydroDynamic (MHD) mechanism

|                                                                                                                         | $\mathbf{O}$                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|
| 門政、独磁场を                                                                                                                 |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|                                                                                                                         |                                                                                                                                        |                    | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Period                                       | Period                                         |
| Radio beam                                                                                                              |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | Derivative                                     |
| Axis                                                                                                                    |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (s)                                          | $(10^{-11} \text{ s s}^{-1})$                  |
| $r = c/\omega$ i Light                                                                                                  | Detetional on                                                                                                                          |                    | SGR 0526-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0                                          | 6.6                                            |
| cylinder                                                                                                                | Rolalional en                                                                                                                          | ergy               | SGR 1627-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4?                                         | _                                              |
| Open<br>Magnetosphere                                                                                                   |                                                                                                                                        |                    | SGR 1806-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5                                          | 8.3 - 47                                       |
| B                                                                                                                       |                                                                                                                                        |                    | SGR 1900+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2                                          | 6.1 - 20                                       |
| Closed                                                                                                                  | - dinala radia                                                                                                                         | ntion              | CVOII 010042 1 791124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0                                          |                                                |
| B Magneto-                                                                                                              |                                                                                                                                        |                    | $4II 0142\pm61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.7                                          | 0.20                                           |
|                                                                                                                         |                                                                                                                                        |                    | 1E 1048.1 - 5937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.4                                          | 1.3-10                                         |
|                                                                                                                         | $9 / D^3 D$                                                                                                                            | $\sum_{i=1}^{2}$   | 1RXS J170849-400910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                         | 1.9                                            |
|                                                                                                                         | $IO\dot{O} \sim \frac{2}{2} \left(\frac{R}{D}\right)$                                                                                  | $)$ $\Omega^4$     | XTE J1810-197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                          | 1.5                                            |
| Neutron Star                                                                                                            | $3c^3 \setminus 2$                                                                                                                     | ) "                | $1E\ 1841{-}045$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.8                                         | 4.2                                            |
| Mass = $1.4 \text{ M}_{\odot}$                                                                                          | ( -                                                                                                                                    | /                  | AX J1844-0258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0                                          | _                                              |
| Magnetic field = $10^4 - 10^9 T$                                                                                        |                                                                                                                                        |                    | $1E\ 2259+586$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0                                          | 0.048                                          |
| HE IS,14 "HIGH ENERGY ASTROPHYSICS"                                                                                     |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|                                                                                                                         |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|                                                                                                                         | a 1/2                                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|                                                                                                                         |                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                |
|                                                                                                                         | $3c^{3}I$ ) $(\dot{D}D)^{1/2}$                                                                                                         |                    | 10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~. <i>P</i>                                  |                                                |
| $B \sim \left(\frac{1}{2}\right)$                                                                                       | $\left(\frac{3c^{3}I}{r^{2}P^{6}}\right)^{1/2}$ $(\dot{P}P)^{1/2}$                                                                     |                    | 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$                                                                                       | $\frac{3c^3I}{\pi^2 R^6} \right)^{1/2} (\dot{P}P)^{1/2}$                                                                               |                    | 10 <sup>-10</sup> B = 10 <sup>13</sup> G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>8</sup> <u>1</u> (<br>++                |                                                |
| $B \sim \left(\frac{3}{8}\right)$                                                                                       | $\left(\frac{3c^3I}{\pi^2 R^6}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                          | _                  | $10^{-10} = \frac{B}{10^{12}} = \frac{10^{12}}{10^{12}} = \frac{B}{10^{12}} = \frac{10^{12}}{10^{12}} = \frac{B}{10^{12}} = \frac{10^{12}}{10^{12}} = 10^$                                                                                                                                                                                   |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$                                                                                       | $\left(\frac{3c^3I}{\pi^2 R^6}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                          |                    | $10^{-10} = \frac{B}{10^{13}} \frac{10^{13}}{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$                                                                                       | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                     |                    | $10^{-10} = \frac{B}{2} = \frac{1013}{1013} G$ $10^{-12} = \frac{B}{2} = \frac{1012}{1012} G + \frac{1}{1012} G + \frac{1}{1012} G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\rm dipole} = 3.2 \times 10$                                                      | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                     |                    | $10^{-10} = \frac{B}{2} = \frac{10^{13} G}{10^{12} G} + \frac{10^{13} G}{10^{12} $                                                                                                                                                                                                                                         |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\rm dipole} = 3.2 \times 10$                                                      | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                     | )-14)              | $10^{-10} = \frac{B}{2} = \frac{10^{13} G}{10^{13} G}$ $10^{-12} = \frac{B}{2} = \frac{10^{12} G}{10^{12} G} + \frac{1}{10^{12} G}$ $10^{-14} = \frac{1}{10^{12} G} + \frac{1}{10^{12} G} + \frac{1}{10^{12} G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\rm dipole} = 3.2 \times 10$                                                      | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                     | ) <sup>-14</sup> ) | $10^{-10} = \frac{B}{10^{13}} \frac{10^{13}}{G} \frac{G}{10^{13}} \frac{10^{-10}}{G} \frac{G}{10^{13}} \frac{G}{G} \frac{10^{-12}}{G} \frac{10^{-12}}{G} \frac{10^{-12}}{G} \frac{G}{G} \frac{10^{-12}}{G} \frac{10^{-14}}{G} \frac{10^{-14}}{G} \frac{10^{-14}}{G} \frac{10^{-16}}{G} \frac{10^{-16}}$ |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\text{dipole}} = 3.2 \times 10$                                                   | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$                                                                     | ) <sup>-14</sup> ) | $10^{-10} = \frac{B}{2} = \frac{10^{13} G}{10^{13} G}$ $10^{-12} = \frac{B}{2} = \frac{10^{13} G}{10^{12} G} + \frac{1}{10^{12} G}$ $10^{-14} = \frac{B}{2} = \frac{10^{10} G}{10^{10} G}$ $\frac{B}{2} = \frac{10^{10} G}{10^{10} G}$ $\frac{B}{2} = \frac{10^{10} G}{10^{10} G}$ $\frac{B}{2} = \frac{10^{10} G}{10^{10} G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\text{dipole}} = 3.2 \times 10$ $B_{\text{dipole}} \sim 10^{-13-14}$              | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$<br>$O^{19}\sqrt{P\dot{P}}G$<br>O(~10)<br>Gauss                      | ) <sup>-14</sup> ) | $10^{-10} = \frac{B}{2} \approx 10^{13} G$ $10^{-12} = \frac{B}{2} \approx 10^{12} G + + + + + + + + + + + + + + + + + + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | 014 G<br>++++++++++++++++++++++++++++++++++++  |
| $B \sim \left(\frac{3}{8}\right)$ $B_{\text{dipole}} = 3.2 \times 10$ $B_{\text{dipole}} \sim 10^{-13-14}$              | $(\dot{P}P)^{1/2}$<br>$(\dot{P}P)^{1/2}$<br>O(~1)<br>Gauss                                                                             | ) <sup>-14</sup> ) | $10^{-10}$ $B = 10^{10} G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | 014 G<br>+ + + + + + + + + + + + + + + + + + + |
| $B \sim \left(\frac{1}{8}\right)^{13-14}$ $B_{\text{dipole}} \sim 10^{-13-14}$ $(\text{magnet} + \text{stars})^{13-14}$ | $\left(\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2}$ $(\dot{P}P)^{1/2}$<br>$O^{19}\sqrt{P\dot{P}}G$ $O(\sim 10)$<br>Gauss<br>r: magnetar) | ) <sup>-14</sup> ) | $10^{-10} = \begin{bmatrix} B & 10^{13} & G \\ B & 10^{12} & G \\ 10^{-12} & B & 10^{12} & G \\ B & 10^{12} & G \\ B & 10^{10} & G \\ B & $                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | 014 G<br>++++++++++++++++++++++++++++++++++++  |
| $B \sim \left(\frac{1}{8}\right)^{B}$<br>$B_{dipole} = 3.2 \times 10^{13-14}$<br>(magnet + sta<br>合磁提中地子更               | $\frac{3c^{3}I}{\pi^{2}R^{6}}\right)^{1/2} (\dot{P}P)^{1/2}$ $O(\sim 1)$ Gauss r: magnetar)                                            | ) <sup>-14</sup> ) | $10^{-10}$ $B = 10^{10} G$ $10^{-12}$ $B = 10^{10} G$ $10^{-14}$ $B = 10^{10} G$ $10^{-18}$ $H + H + H + H + H + H + H + H + H + H +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>+++<br>++++++++++++++++++++++++++++++++ | 014 G<br>+ + + + + + + + + + + + + + + + + + + |

\_\_\_\_

Spin Period (sec)



## MAGNETAR CANDIDATES (SGR, AXP)



- ・12個のマグネターが発見されている。
- ・銀河面付近に集中している。

- Kouveliotou et al. 2003
- ✓強磁場中性子星の起源を理解するためには 強磁場超新星のダイナミクスが欠かせない

## MagnetoHydroDynamic (MHD) mechanism

(e.g., Symbalisty 1984, Kotake et al.04,06, Obergaulinger+08, Burrows+07, Shibata+06, Suwa+08)

works only when pre-collapse core has rapid rotation (P<sub>0</sub> < 2 s) and strong magnetic fields(B<sub>0</sub>>10<sup>4</sup>{11}G).

- ✓ The B-field strength in the PNS
   ~ 10^{15} G
   ⇒ relevant to magnetar formation
- ✓ produces hyper-energetic explosion10^{52} erg
   ⇒ link to hypernova, GRBs
- The progenitor is very rare. (< 1 % of all supernovae) Woosley & Heger (2006) ApJ



Takiwaki & KK (2010)





$$E_{rot} = 1/2I\Omega^2$$

$$E_{\rm shr} \sim 10^{52} \frac{M_{\rm PNS}}{1 \ M_{\odot}} \left(\frac{R_{\nu}}{50 \ \rm km}\right)^2 \left(\frac{\Omega}{10^3 \ \rm rad \ \rm s^{-1}}\right)^2 \ {\rm ergs}$$

高速回転していると10<sup>51</sup> ergは 楽に出せる!

Meier et al.(1976) predicted that rapid rotation and strong magnetic fields are required for the MHD mechanism.



FIG. 2.—The ( $\epsilon_{M0}$ ,  $\epsilon_{R0}$ )-plane for an efficient collapse of stellar core. The parameters  $\xi = 12$  and  $\eta = 0.5$  are chosen t correspond to the numerical results of LW. The positions of





THE MAGNETIC FIELD STRENGTH IS PROPORTIONAL TO OUR IGNORANCE.

John Hawley

## <u>現在のMHDシミュレーションの限界</u>

- The numerical resolutions for global MHD simulations (encompassing the whole iron core) are generally not enough to capture MRI (MagnetoRotational Instability).
- Relevant physical length scales
  - global scales:
  - scale height of physical quantities: 1 km
  - MRI wavelength:



< 10^-6 km



$$\lambda_{\mathrm{MRI}}^{\mathrm{max}} \sim \frac{2\pi v_{\mathrm{A}}}{\Omega} \sim v_{\mathrm{A}}P \sim (10^4 \mathrm{~cm})P_{10}\frac{B_{12}}{\rho_{11}^{1/2}}$$

### - viscous and dissipation scales



## What is MRI (磁気回転不安定性)?

- ✓ Thinking experiment:
  - (1) Two spacecrafts rotating around the earth, connected by the spring.
  - (2) Since they are rotating in the Kepler orbit,

## $\Omega \propto r^{-3/2}$

A rotates faster than B.

- (3) Suppose that the angular momentum is transferred from A to B (via the magnetic fields in astrophysics alternative to the spring..)
- (4) A rotates slower, making its orbit smaller, B rotates faster, making its orbit larger



#### $\rightarrow$ catastrophic process $\, ! \,$

MRI develops in any system which satisfies  $d\Omega/dr < o$ thus, ubiquitous in the universe, accretion disk of GRB, protostellar disk.. in the supernova core.

現時点では、MRIを分解するのはローカルシミュレーションしか手段がない。 (e.g., Obergaulinger et al. (2010) A&A)

### <u>MRIのローカルシミュレーション</u>



### MRIによる磁場の増幅





2.43



2.68



2.92



Balbus & Hawley 1998



✓ 典型的な磁場の増幅は10倍✓ MRI⇒乱流⇒磁場散逸⇒熱化

 $L_{\rm MRI} = 10^{51} R_7^2 h_6 \, {\rm erg \, sec^{-1}} \times$   $\left(\frac{f}{100}\right) \left(\frac{B_{\rm cb}}{10B_0}\right)^2 \left(\frac{P_{\rm cb}}{100P_0}\right)^{1/4} \left(\frac{|q|}{1.0}\right) \left(\frac{\Omega}{10^3 \, {\rm sec^{-1}}}\right).$ (27)

✓ MRI:
 (1)ニュートリノ加熱メカニズムを助ける可能性
 (2)MHDメカニズムを助ける
 ☆ローカルスケールを追うシミュレーション
 「京」の課題のうちの一つ

## <u>超新星シミュレーションの現状:3つの mechanism</u>



## <u>超新星シミュレーションの現状:3つの mechanism</u>

| Energy-drivers for explosions:                                                                                          | 爆発したの?                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| ☆ Neutrino heating mechanism<br>aided by convection/SASI<br>(Marek & Janka 09, Suwa et al. 10, Bruenn et al. 09)        | Most Likely!<br>(現状2Dでは、<br>状態方程式が非常に<br>柔らかい場合のみ,<br>弱い爆発を起こす。 |  |  |  |
| <ul> <li>✓理論モデルは色々。</li> <li>✓爆発メカニズムの正解を決めるには、</li> <li>観測との比較、観測予言が不可欠。</li> <li>✓超新星を内(理論)と外(観測)から 調べるスタイ</li> </ul> | イルがベスト                                                          |  |  |  |
| ☆ 超新星コアのダイナミクスのライブメッセンジャー<br>重力波、ニュートリノ<br>& 元素合成<br>Cerda Duran+07. Burrows+07. Suwa+07.                               |                                                                 |  |  |  |
| +シミュレーションの計算手法(残りの                                                                                                      | 時間+次回)                                                          |  |  |  |


一般相対性理論 R~R<sub>schwarzshild</sub>

特殊相対性理論 (V~C)

ニュートン力学





重力崩壊中の典型的な量 Schwarzshild 半径  $R_s = 3 \operatorname{km}\left(\frac{M}{M_{\odot}}\right) v/c = 0.1$ 

PNSの半径=R<sub>PNS</sub>~50km 質量~  $M_{\odot}$ 

Rs/R~O(10)%ぐらい 効きそう。

✓特殊・一般相対論的補正も
 10パーセントオーダーで効く。
 ✓1回目のマイクロ物理、2回目の
 multi-dimensionalityも同じ
 オーダーなので重要。

# <sup>まずは</sup>ニュートン力学での流体基礎方程式の導出(その1)

質量保存の式:

オレンジ領域内の質量

$$\frac{\partial \int_{V} \rho dV}{\partial t} = -\int_{S} \rho \mathbf{v} \cdot d\mathbf{S}$$

ガウスの定理
$$\int_{S} \rho \mathbf{v} \cdot d\mathbf{S} = \int_{V} \operatorname{div}(\rho \mathbf{v}) dV$$

質量保存  
$$\frac{\partial \rho}{\partial t} + \operatorname{div} \rho \mathbf{v} = 0$$





ラグランジュ微分とオイラー微分 (Lagrange derivative and Euler derivative) 流体の運動に関する二つの視点 ☆ オイラー的視点:ある場所を決めた視点  $\delta F(\mathbf{r}, t) = F(\mathbf{r}, t + \Delta t) - F(\mathbf{r}, t)$  $F(\mathbf{r},t) + \frac{\partial F}{\partial t} \Delta t - F(\mathbf{r},t)$  $\partial F$  $\frac{\partial T}{\partial t}\Delta t$  $\frac{\delta F(\mathbf{r},t)}{\Delta t} = \frac{\partial F}{\partial t}$  $\partial F$  $\lim$ 

オイラー微分の時間微分は、普通の偏微分

 $\Delta t \rightarrow 0$ 





練習:質量保存の式をラグランジュ微分を用いて書く。

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}$$
$$\nabla \cdot (\rho \mathbf{v}) = \operatorname{div} \rho \mathbf{v} = \mathbf{v} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{v}$$
$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho + \rho (\nabla \cdot \mathbf{v}) = \frac{d\rho}{dt} + \rho (\nabla \cdot \mathbf{v}) = 0$$

Mass conservation in Lagrange derivative form





流体の運動方程式と等価な 運動量流束  $\rho v$  (momentum flux)の時間変化の式:

#### 力学の場合の運動方程式

$$\frac{d\mathbf{P}}{dt} = \mathbf{F}, \quad \mathbf{P} = m\mathbf{v}$$

#### <mark>流体</mark>力学の場合の運動方程式

$$\frac{\partial \rho \boldsymbol{v}}{\partial t} = \frac{\partial \rho}{\partial t} \boldsymbol{v} + \rho \frac{\partial \boldsymbol{v}}{\partial t},$$

$$= -\nabla (\rho \boldsymbol{v}) \boldsymbol{v} - \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \nabla p + \rho \boldsymbol{g}$$





流束

S

流体の運動方程式と等価な 運動量流束  $\rho v$  (momentum flux)の時間変化の式:

the Cartesian cordinate (x, y, z) の場合、

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho v_x \\ \rho v_y \\ \rho v_z \end{pmatrix} + \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix} \begin{pmatrix} \rho v_x v_x & \rho v_x v_y & \rho v_x v_z \\ \rho v_y v_x & \rho v_y v_y & \rho v_y v_z \\ \rho v_z v_x & \rho v_z v_y & \rho v_z v_z \end{pmatrix} + \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix} \begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix} = \rho \begin{pmatrix} g_x \\ g_y \\ g_z \end{pmatrix}.$$

 $\frac{\partial}{\partial t}(\rho v_i) + \sum_{k=1}^{3} \frac{\partial}{\partial x_k} (\rho v_i v_k) + (\operatorname{grad} p)_i = -\rho \ (\operatorname{grad} \Phi)_i \quad i = 1, 2, 3$ 

Einstein の縮約(Einstein's contraction): 添え字が重なっているものは、 1~3(ここではx、y、z)まで足し合わせる。

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_k}(\rho v_i v_k) + (\operatorname{grad} p)_i = -\rho \ (\operatorname{grad} \Phi)_i \quad i = 1, 2, 3$$

流体の運動方程式と等価な 運動量流束  $\rho v$  (momentum flux)の時間変化の式:

# より簡略化して書くと、

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial \pi_{i\,j}}{\partial x_j} = \rho g_i$$

# 運動量ストレス テンソル(Momentum-Stress tensor)

$$\pi_{ij} = \rho v_i v_j + \delta_{ij} p$$

$$\delta_{ij}$$
は、クロネッカーのデルタ  
 $\delta_{ij} = 0 \text{ for } i \neq j$   
 $\delta_{ij} = 1 \text{ for } i = j$ 

# 質量保存の式、運動量流束の式をじっと比べてみると、



$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v_i}{\partial x_i} = 0$$

運動量流束の式、



エネルギーの時間変化の式 (energy equation):

保存系で書き下すと、(導出方法、運動方程式の両辺に速度を掛けて積分)

#### <u>Advanced topics</u> エネルギー方程式を保存系に

1回目のトラペ



#### エネルギー保存の現状

#### Tokyo simulation (3D, Newton+)



#### Garching simulation (1D+CFC)



#### **Princeton simulation (2D Newton)**





#### <u>流体力学基礎方程式のまとめ</u>

質量保存  

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \rho \mathbf{v} = \mathbf{0}$$

#### 運動量の式

3

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial \pi_{i\,j}}{\partial x_j} = \rho g_i$$

$$\pi_{ij} = \rho v_i v_j + \delta_{ij} p$$

$$\frac{\partial}{\partial t}(\rho e) + \operatorname{div}\left[\left(\rho e + p\right)\vec{v}\right] = -\rho\vec{v} \text{ grad } \Phi$$

状態方程式

p(
ho) Polytropic ポリトロープ状態方程式

ポアソン方程式  $\Delta \Phi = 4\pi G 
ho$ 

未知数



方程式の数と未知数の数が同じで方程式系が閉じている。

「方程式の数と未知数の数が同じで方程式系が閉じている」 ⇒初期条件を与えれば、 その後の時間発展が(原理的には)分かるはず。

☆ただ方程式が非線形で、複雑。 解析解はごく限られた問題でしか得られない。

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial \pi_{ij}}{\partial x_j} = \rho g_i \qquad \pi_{ij} = \rho v_i v_j + \delta_{ij} p_i$$

したがって、 流体の運動を追うためには、数値計算が不可欠。 ☆更に偏微分方程式を数値的に解かなくてはならない。

いかに精度良く、数値的に流体の時間発展を追うか? <u>数値流体力学(Computational Fluid Dynamics:CFD)</u> 参考文献:

## 超新星全般最近のレビュー

• Kotake et al."Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae" Rep. Prog. Phys., 69, 971-1143 (2006)

• Woosley & Janka, "The physics of core-collapse supernovae",

Nature Physics, Volume 1, Issue 3, pp. 147-154 (2005). 星の進化 最新のレビュー

- Langanke et al. "Nuclear weak-interaction processes in stars", Reviews of Modern Physics, vol. 75, Issue 3, pp. 819-862,(2003)
   超新星コア内の詳細なニュートリノ反応
- ・Burrows et al. "Neutrino opacities in nuclear matter" Nuclear Physics A, Volume 777, p. 356-394. (2006) 超新星コア内の状態方程式

#### • Sumiyoshi et al.

"Postbounce Evolution of Core-Collapse Supernovae: Long-Term Effects of the Equation of State" The Astrophysical Journal, Volume 629, Issue 2, pp. 922-932. (2005)