Bridge++  Version 1.4.4
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
forceSmear_APE.cpp
Go to the documentation of this file.
1 
14 #include "forceSmear_APE.h"
15 
16 
17 
18 #ifdef USE_FACTORY
19 namespace {
20  ForceSmear *create_object(Projection *proj)
21  {
22  return new ForceSmear_APE(proj);
23  }
24 
25 
26  bool init = ForceSmear::Factory::Register("APE", create_object);
27 }
28 #endif
29 
30 
31 
32 const std::string ForceSmear_APE::class_name = "ForceSmear_APE";
33 
34 //====================================================================
36 {
37  const string str_vlevel = params.get_string("verbose_level");
38 
39  m_vl = vout.set_verbose_level(str_vlevel);
40 
41  //- fetch and check input parameters
42  double rho1;
43 
44  int err = 0;
45  err += params.fetch_double("rho_uniform", rho1);
46 
47  if (err) {
48  vout.crucial(m_vl, "Error at %s: input parameter not found.\n", class_name.c_str());
49  exit(EXIT_FAILURE);
50  }
51 
52 
53  set_parameters(rho1);
54 }
55 
56 
57 //====================================================================
58 void ForceSmear_APE::set_parameters(const double rho1)
59 {
60  //- print input parameters
61  vout.general(m_vl, "%s:\n", class_name.c_str());
62  vout.general(m_vl, " rho = %8.4f\n", rho1);
63 
64  //- range check
65  // NB. rho == 0 is allowed.
66 
67  //- store values
68  // m_rho.resize(m_Ndim * m_Ndim); // already resized in init.
69  for (int mu = 0; mu < m_Ndim; ++mu) {
70  for (int nu = 0; nu < m_Ndim; ++nu) {
71  m_rho[mu + nu * m_Ndim] = rho1;
72  }
73  }
74 }
75 
76 
77 //====================================================================
78 void ForceSmear_APE::set_parameters(const std::vector<double>& rho)
79 {
80  //- print input parameters
81  vout.general(m_vl, "%s:\n", class_name.c_str());
82  for (int mu = 0; mu < m_Ndim; ++mu) {
83  vout.general(m_vl, " rho[%d] = %8.4f\n", mu, rho[mu]);
84  }
85 
86  //- range check
87  // NB. rho == 0 is allowed.
88  assert(rho.size() == m_Ndim * m_Ndim);
89 
90  //- store values
91  // m_rho.resize(m_Ndim * m_Ndim); // already resized in init.
92  for (int mu = 0; mu < m_Ndim; ++mu) {
93  for (int nu = 0; nu < m_Ndim; ++nu) {
94  m_rho[mu + nu * m_Ndim] = rho[mu + nu * m_Ndim];
95  }
96  }
97 }
98 
99 
100 //====================================================================
102 {
105 
106  m_rho.resize(m_Ndim * m_Ndim);
107  m_U.resize(m_Ndim);
108  m_iTheta.resize(m_Ndim);
109 
110  for (int mu = 0; mu < m_Ndim; ++mu) {
111  for (int nu = 0; nu < m_Ndim; ++nu) {
112  m_rho[mu + nu * m_Ndim] = 0.0;
113  }
114  }
115 }
116 
117 
118 //====================================================================
119 void ForceSmear_APE::force_udiv(Field_G& Sigma, const Field_G& Sigmap, const Field_G& U)
120 {
121  int Nc = CommonParameters::Nc();
122  int NinG = 2 * Nc * Nc;
123 
124  assert(Sigmap.nin() == NinG);
125  assert(Sigmap.nvol() == m_Nvol);
126  assert(Sigmap.nex() == m_Ndim);
127 
128  Field_G C(m_Nvol, 1);
129  Field_G sigmap_tmp(m_Nvol, 1), Xi(m_Nvol, 1);
130 
131  for (int mu = 0; mu < m_Ndim; ++mu) {
132  m_U[mu].setpart_ex(0, U, mu);
133  }
134 
135  Field_G c_tmp(m_Nvol, 1);
136  for (int mu = 0; mu < m_Ndim; ++mu) {
137  C.set(0.0);
138 
139  for (int nu = 0; nu < m_Ndim; ++nu) {
140  if (nu == mu) continue;
141  double rho = m_rho[mu + m_Ndim * nu];
142  staple(c_tmp, m_U[mu], m_U[nu], mu, nu);
143  C.addpart_ex(0, c_tmp, 0, rho);
144  }
145 
146  sigmap_tmp.setpart_ex(0, Sigmap, mu);
147 
148  double alpha = m_rho[mu + m_Ndim * mu];
150  alpha, sigmap_tmp, C, m_U[mu]);
151  Sigma.setpart_ex(mu, Xi, 0);
152  }
153 
154  Field_G sigma_tmp(m_Nvol, 1);
155  for (int mu = 0; mu < m_Ndim; ++mu) {
156  for (int nu = 0; nu < m_Ndim; ++nu) {
157  if (nu == mu) continue;
158  double rho = m_rho[mu + m_Ndim * nu];
159  force_each(sigma_tmp, m_U[mu], m_U[nu],
160  m_iTheta[mu], m_iTheta[nu], mu, nu);
161  Sigma.addpart_ex(mu, sigma_tmp, 0, rho);
162  }
163  }
164 }
165 
166 
167 //====================================================================
169  const Field_G& V_mu, const Field_G& V_nu,
170  const Field_G& iTheta_mu,
171  const Field_G& iTheta_nu,
172  int mu, int nu)
173 {
174  Field_G vt1(m_Nvol, 1), vt2(m_Nvol, 1), vt3(m_Nvol, 1);
175 
176  Sigma_mu.set(0.0);
177 
178  m_shift.backward(vt1, V_nu, mu);
179  m_shift.backward(vt2, V_mu, nu);
180  mult_Field_Gnd(vt3, 0, vt1, 0, vt2, 0);
181  multadd_Field_Gnd(Sigma_mu, 0, vt3, 0, iTheta_nu, 0, 1.0);
182 
183  mult_Field_Gdn(vt3, 0, iTheta_mu, 0, V_nu, 0);
184  mult_Field_Gdn(vt2, 0, vt1, 0, vt3, 0);
185  m_shift.forward(vt3, vt2, nu);
186  axpy(Sigma_mu, 1.0, vt3); // Sigma_mu += vt3;
187 
188  mult_Field_Gdn(vt3, 0, V_mu, 0, iTheta_nu, 0);
189  mult_Field_Gdn(vt2, 0, vt1, 0, vt3, 0);
190  m_shift.forward(vt3, vt2, nu);
191  axpy(Sigma_mu, 1.0, vt3); // Sigma_mu += vt3;
192 
193  m_shift.backward(vt1, iTheta_nu, mu);
194  m_shift.backward(vt2, V_mu, nu);
195  mult_Field_Gnd(vt3, 0, vt1, 0, vt2, 0);
196  multadd_Field_Gnd(Sigma_mu, 0, vt3, 0, V_nu, 0, 1.0);
197 
198  mult_Field_Gdd(vt2, 0, vt1, 0, V_mu, 0);
199  mult_Field_Gnn(vt3, 0, vt2, 0, V_nu, 0);
200  m_shift.forward(vt2, vt3, nu);
201  axpy(Sigma_mu, 1.0, vt2); // Sigma_mu += vt2;
202 
203  m_shift.backward(vt1, V_nu, mu);
204  m_shift.backward(vt2, iTheta_mu, nu);
205  mult_Field_Gnd(vt3, 0, vt1, 0, vt2, 0);
206  multadd_Field_Gnd(Sigma_mu, 0, vt3, 0, V_nu, 0, 1.0);
207 }
208 
209 
210 //====================================================================
212  const Field_G& u_mu, const Field_G& u_nu,
213  int mu, int nu)
214 {
215  Field_G v1(m_Nvol, 1), v2(m_Nvol, 1);
216 
217  //- upper direction
218  m_shift.backward(v1, u_mu, nu);
219  mult_Field_Gnn(v2, 0, u_nu, 0, v1, 0);
220 
221  m_shift.backward(v1, u_nu, mu);
222  mult_Field_Gnd(c, 0, v2, 0, v1, 0);
223 
224  //- lower direction
225  m_shift.backward(v2, u_nu, mu);
226  mult_Field_Gnn(v1, 0, u_mu, 0, v2, 0);
227  mult_Field_Gdn(v2, 0, u_nu, 0, v1, 0);
228  m_shift.forward(v1, v2, nu);
229  c.addpart_ex(0, v1, 0);
230 }
231 
232 
233 //====================================================================
234 //============================================================END=====
Bridge::VerboseLevel m_vl
Definition: forceSmear.h:56
BridgeIO vout
Definition: bridgeIO.cpp:495
void set(const int jin, const int site, const int jex, double v)
Definition: field.h:164
void force_each(Field_G &, const Field_G &, const Field_G &, const Field_G &, const Field_G &, int mu, int nu)
Recursive calculation for APE smeared fermion force.
void general(const char *format,...)
Definition: bridgeIO.cpp:195
std::vector< Field_G > m_iTheta
void multadd_Field_Gnd(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2, const double ff)
int fetch_double(const string &key, double &value) const
Definition: parameters.cpp:211
int nvol() const
Definition: field.h:116
void mult_Field_Gdn(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2)
Class for parameters.
Definition: parameters.h:46
void addpart_ex(int ex, const Field &w, int exw)
Definition: field.h:193
int nin() const
Definition: field.h:115
Base class for force calculation of smeared operators.
Definition: forceSmear.h:34
void staple(Field_G &, const Field_G &, const Field_G &, int mu, int nu)
SU(N) gauge field.
Definition: field_G.h:38
virtual void force_recursive(Field_G &Xi, Field_G &iTheta, double alpha, const Field_G &Sigmap, const Field_G &C, const Field_G &U)=0
determination of fields for force calculation
void mult_Field_Gdd(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2)
void set_parameters(const Parameters &params)
void backward(Field &, const Field &, const int mu)
int nex() const
Definition: field.h:117
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
Definition: field.cpp:168
void mult_Field_Gnn(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2)
void crucial(const char *format,...)
Definition: bridgeIO.cpp:178
void force_udiv(Field_G &Sigma, const Field_G &Sigma_p, const Field_G &U)
base class for projection operator into gauge group.
Definition: projection.h:31
ShiftField_lex m_shift
std::vector< Field_G > m_U
double rho(int mu, int nu)
void setpart_ex(int ex, const Field &w, int exw)
Definition: field.h:186
string get_string(const string &key) const
Definition: parameters.cpp:116
std::vector< double > m_rho
static const std::string class_name
Projection * m_proj
static VerboseLevel set_verbose_level(const std::string &str)
Definition: bridgeIO.cpp:131
void forward(Field &, const Field &, const int mu)
void mult_Field_Gnd(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2)