14 #ifndef FOPR_CLOVERTERM_EO_IMPL_ORG_INCLUDED
15 #define FOPR_CLOVERTERM_EO_IMPL_ORG_INCLUDED
120 const std::vector<int> bc);
162 }
else if (
m_mode ==
"odd") {
176 const int mu,
const int nu);
200 std::vector<double>
csmatrix(
const int&);
210 void init(
const std::string repr);
const Field mult_dag(const Field &f)
void set_csw_chiral()
explicit implementation for Chiral representation (for Imp-version).
void init(const std::string repr)
Field_G m_T
m_T = 1 - kappa c_SW sigma F / 2
void D_dirac(Field &v, const Field &f, const int ieo)
explicit implementation for Dirac representation (for Imp-version).
void set_mode(const std::string mode)
setting the mode of multiplication if necessary. Default implementation here is just to avoid irrelev...
void D_chiral(Field &v, const Field &f, const int ieo)
explicit implementation for Chiral representation (for Imp-version).
Container of Field-type object.
void set_csw_dirac()
explicit implementation for Dirac representation (for Imp-version).
void mult_isigma(Field_F &, const Field_F &, const int mu, const int nu)
std::vector< double > csmatrix(const int &)
void mult_csw_inv_chiral(Field &, const Field &, const int ieo)
multiplies [1 - csw kappa sigma_{mu nu} F_{mu nu} ]^{-1}
void set_fieldstrength(Field_G &, const int, const int)
Wilson-type fermion field.
void mult(Field &v, const Field &f)
return D = D^dag = 1-f_ee or 1-f_oo
int sg_index(const int mu, const int nu)
void trSigmaInv(Field_G &, const int mu, const int nu)
std::string get_mode() const
only for Fopr_Overlap
std::vector< Field_G > m_T2
m_T2 is used in Org-version.
std::vector< int > m_boundary
Common parameter class: provides parameters as singleton.
void mult_csw(Field_F &, const Field_F &, const int ieo)
void(Fopr_CloverTerm_eo::* m_mult)(Field &, const Field &)
int field_nvol()
returns the volume for which the fermion operator is defined.
double flop_count()
returns number of floating point operations.
Methods to shift the even-odd field.
static const std::string class_name
void set_parameters(const Parameters ¶ms)
void crucial(const char *format,...)
int field_nex()
returns the external d.o.f. for which the fermion operator is defined.
void D(Field &v, const Field &f, const int ieo)
multiplies 1 - csw kappa sigma_{mu nu} F_{mu nu}
void mult_dag(Field &v, const Field &f)
hermitian conjugate of mult(Field&, const Field&).
Fopr_CloverTerm_eo(std::string repr)
void set_config(unique_ptr< Field_G > &Ueo)
int field_nin()
returns the on-site d.o.f. for which the fermion operator is defined.
void set_config(Field *Ueo)
setting pointer to the gauge configuration.
Base class of fermion operator family.
void mult_csw_inv(Field &, const Field &, const int ieo)
multiplies [1 - csw kappa sigma_{mu nu} F_{mu nu} ]^{-1}
std::vector< GammaMatrix > m_GM
Gamma Matrix and Sigma_{mu,nu} = -i [Gamma_mu, Gamma_nu] /2.
std::vector< GammaMatrix > m_SG
const Field mult(const Field &f)
return D = D^dag = 1-f_ee or 1-f_oo
void mult_csw_inv_dirac(Field &, const Field &, const int ieo)
multiplies [1 - csw kappa sigma_{mu nu} F_{mu nu} ]^{-1}