Go to the documentation of this file.
   29   std::vector<double> phi, phipr;
 
   63                                        double *phi, 
double *phipr)
 
   71   for (
int mu = 0; mu < Ndim; ++mu) {
 
   84   assert(bc.size() == Ndim);
 
   96   for (
int i = 0; i < 3; ++i) {
 
  106   double    Lx_inv = 1.0 / double(Lx);
 
  107   double    c0r    = cos(phi[0] * Lx_inv);
 
  108   double    c0i    = sin(phi[0] * Lx_inv);
 
  109   double    c1r    = cos(phi[1] * Lx_inv);
 
  110   double    c1i    = sin(phi[1] * Lx_inv);
 
  111   double    c2r    = cos(phi[2] * Lx_inv);
 
  112   double    c2i    = sin(phi[2] * Lx_inv);
 
  118   c0r = cos(phipr[0] * Lx_inv);
 
  119   c0i = sin(phipr[0] * Lx_inv);
 
  120   c1r = cos(phipr[1] * Lx_inv);
 
  121   c1i = sin(phipr[1] * Lx_inv);
 
  122   c2r = cos(phipr[2] * Lx_inv);
 
  123   c2i = sin(phipr[2] * Lx_inv);
 
  151   axpy(force, 1.0, force1); 
 
  194   for (
int mu = 0; mu < Ndim; ++mu) {
 
  195     for (
int nu = 0; nu < Ndim; ++nu) {
 
  196       if (nu == mu) 
continue;
 
  219       copy(force2, force1); 
 
  226       shift.backward(vt1, vt3, nu);
 
  229       shift.backward(vt2, zeta1, nu);
 
  232       shift.backward(Utmp, Unu, mu);
 
  240       axpy(force2, 1.0, force1); 
 
  243       shift.backward(vt1, eta3, mu);
 
  246       shift.backward(zeta_mu, zeta1, mu);
 
  249       axpy(force2, 1.0, force1); 
 
  252       shift.backward(vt1, eta3, nu);
 
  255       shift.backward(vt1, vt3, mu);
 
  256       shift.backward(vt2, vt4, nu);
 
  259       axpy(force2, 1.0, force1); 
 
  262       shift.backward(Utmp, Unu, mu);
 
  269       shift.forward(vt3, vt1, nu);
 
  270       shift.forward(vt4, vt2, nu);
 
  272       axpy(force2, -1.0, force1); 
 
  277       shift.backward(vt3, vt1, mu);
 
  278       shift.forward(vt1, vt3, nu);
 
  280       shift.forward(vt2, vt4, nu);
 
  282       axpy(force2, -1.0, force1);           
 
  294   for (
int mu = 0; mu < 
m_Ndim; ++mu) {
 
  295     for (
int nu = 0; nu < 
m_Ndim; ++nu) {
 
  296       if (nu == mu) 
continue;
 
  302       staple.
upper(Cmu_ud1, *
m_U, mu, nu);
 
  305       staple.
lower(Cmu_ud2, *
m_U, mu, nu);
 
  307       axpy(Cmu_ud1, -1.0, Cmu_ud2);
 
  326     for (
int site = 0; site < Svol; ++site) {
 
  327       for (
int s = 0; s < Nd; ++s) {
 
  328         for (
int cc = 0; cc < Nc2; ++cc) {
 
  329           f.
set(cc + Nc2 * s, site, 0, 0.0);
 
  
 
void set_parameters(const Parameters ¶ms)
sets parameters by a Parameter object: to be implemented in a subclass.
void set_boundary_wkpr(Field_G &u, const Mat_SU_N &wkpr)
void setpart_ex(int ex, const Field &w, int exw)
void force_udiv(Field &force, const Field &eta)
For recursive calculation of smeared force.
double m_cSW
clover coefficient
void set_string(const string &key, const string &value)
void set_parameters(const Parameters ¶ms)
void force_udiv1(Field &force, const Field &zeta, const Field &eta)
For recursive calculation of smeared force.
void set(const int jin, const int site, const int jex, double v)
void set_double(const string &key, const double value)
void set_boundary_wk(Field_G &u, const Mat_SU_N &wk)
void mult_isigma(Field_F &, const Field_F &, const int mu, const int nu)
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
void mult_Field_Gd(Field_F &y, const int ex, const Field_G &u, int ex1, const Field_F &x, int ex2)
void set_double_vector(const string &key, const vector< double > &value)
int index_dir(const int mu, const int nu)
Mat_SU_N m_wkpr
SF boundary condition at t=Nt.
void upper(Field_G &, const Field_G &, const int, const int)
void copy(Field &y, const Field &x)
copy(y, x): y = x
void tensorProd_Field_F(Field_G &u, const Field_F &v1, const Field_F &v2)
Fopr_Clover_SF * m_fopr_c
void set(int c, const double &re, const double &im)
void force_udiv1(Field &force, const Field &zeta, const Field &eta)
void addpart_ex(int ex, const Field &w, int exw)
void mult_gm5(Field &v, const Field &w)
multiplies gamma_5 matrix.
void set_parameters(const Parameters ¶ms)
int fetch_int_vector(const string &key, vector< int > &value) const
void set_mode(const std::string mode)
setting the mode of multiplication if necessary. Default implementation here is just to avoid irrelev...
static const std::string class_name
void mult(Field &v, const Field &f)
multiplies fermion operator to a given field.
void set_int_vector(const string &key, const vector< int > &value)
Field_G * m_Cud
for force calculation
Methods to shift a field in the lexical site index.
void set_parameters(const Parameters ¶ms)
void set_boundary_spatial_link_zero(Field_G &u)
double m_kappa
hopping parameter
void set_boundary_zero(Field_F &f)
void lower(Field_G &, const Field_G &, const int, const int)
static VerboseLevel set_verbose_level(const std::string &str)
void mult_Field_Gn(Field_F &y, const int ex, const Field_G &u, int ex1, const Field_F &x, int ex2)
void mult_Field_Gdd(Field_G &W, const int ex, const Field_G &U1, const int ex1, const Field_G &U2, const int ex2)
void scal(Field &x, const double a)
scal(x, a): x = a * x
static int ipe(const int dir)
logical coordinate of current proc.
int fetch_string(const string &key, string &value) const
Wilson-type fermion field.
int fetch_double(const string &key, double &value) const
Force_F_Wilson_SF * m_force_w
void crucial(const char *format,...)
void get_parameters(Parameters ¶ms) const
Mat_SU_N m_wk
In order to set the boundary field.
std::vector< double > m_phi
SF boundary condition at t=0.
Container of Field-type object.
void force_udiv1_impl(Field_G &force, const Field_F &zeta, const Field_F &eta)
Core implemetation of clover force calculation.
void set_component()
Set building components for force calculation.
int fetch_double_vector(const string &key, vector< double > &value) const
std::vector< double > m_phipr
SF boundary condition at t=Nt.
void general(const char *format,...)
std::vector< int > m_boundary
boundary conditions
static std::string get_verbose_level(const VerboseLevel vl)
Bridge::VerboseLevel m_vl