Bridge++  Ver. 1.2.x
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
fopr_CloverTerm_eo.cpp
Go to the documentation of this file.
1 
14 #include "fopr_CloverTerm_eo.h"
15 
16 #include "threadManager_OpenMP.h"
17 #include "solver_CG.h"
18 
19 #ifdef USE_PARAMETERS_FACTORY
20 #include "parameters_factory.h"
21 #endif
22 
23 using std::valarray;
24 
25 #if defined USE_GROUP_SU3
26 #include "fopr_Wilson_impl_SU3.inc"
27 #elif defined USE_GROUP_SU2
28 #include "fopr_Wilson_impl_SU2.inc"
29 #elif defined USE_GROUP_SU_N
30 #include "fopr_Wilson_impl_SU_N.inc"
31 #endif
32 
33 //====================================================================
34 //- parameter entry
35 namespace {
36  void append_entry(Parameters& param)
37  {
38  param.Register_double("hopping_parameter", 0.0);
39  param.Register_double("clover_coefficient", 0.0);
40  param.Register_int_vector("boundary_condition", std::valarray<int>());
41 
42  param.Register_string("verbose_level", "NULL");
43  }
44 
45 
46 #ifdef USE_PARAMETERS_FACTORY
47  bool init_param = ParametersFactory::Register("Fopr.CloverTerm_eo",
48  append_entry);
49 #endif
50 }
51 //- end
52 
53 //- parameters class
55 { append_entry(*this); }
56 //- end
57 
58 const std::string Fopr_CloverTerm_eo::class_name = "Fopr_CloverTerm_eo";
59 
60 //====================================================================
61 void Fopr_CloverTerm_eo::init(std::string repr)
62 {
63  m_repr = repr;
64 
68  m_NinF = 2 * m_Nc * m_Nd;
70  m_Nvol2 = m_Nvol / 2;
71 
72  m_boundary.resize(m_Ndim);
73 
74  m_Ueo = 0;
75 
76  m_GM.resize(m_Ndim + 1);
77  m_SG.resize(m_Ndim * m_Ndim);
78 
79  GammaMatrixSet *gmset = GammaMatrixSet::New(m_repr);
80 
81  m_GM[0] = gmset->get_GM(gmset->GAMMA1);
82  m_GM[1] = gmset->get_GM(gmset->GAMMA2);
83  m_GM[2] = gmset->get_GM(gmset->GAMMA3);
84  m_GM[3] = gmset->get_GM(gmset->GAMMA4);
85  m_GM[4] = gmset->get_GM(gmset->GAMMA5);
86 
87  m_SG[sg_index(0, 1)] = gmset->get_GM(gmset->SIGMA12);
88  m_SG[sg_index(1, 2)] = gmset->get_GM(gmset->SIGMA23);
89  m_SG[sg_index(2, 0)] = gmset->get_GM(gmset->SIGMA31);
90  m_SG[sg_index(3, 0)] = gmset->get_GM(gmset->SIGMA41);
91  m_SG[sg_index(3, 1)] = gmset->get_GM(gmset->SIGMA42);
92  m_SG[sg_index(3, 2)] = gmset->get_GM(gmset->SIGMA43);
93 
94  m_SG[sg_index(1, 0)] = m_SG[sg_index(0, 1)].mult(-1);
95  m_SG[sg_index(2, 1)] = m_SG[sg_index(1, 2)].mult(-1);
96  m_SG[sg_index(0, 2)] = m_SG[sg_index(2, 0)].mult(-1);
97  m_SG[sg_index(0, 3)] = m_SG[sg_index(3, 0)].mult(-1);
98  m_SG[sg_index(1, 3)] = m_SG[sg_index(3, 1)].mult(-1);
99  m_SG[sg_index(2, 3)] = m_SG[sg_index(3, 2)].mult(-1);
100 
101  m_SG[sg_index(0, 0)] = gmset->get_GM(gmset->UNITY);
102  m_SG[sg_index(1, 1)] = gmset->get_GM(gmset->UNITY);
103  m_SG[sg_index(2, 2)] = gmset->get_GM(gmset->UNITY);
104  m_SG[sg_index(3, 3)] = gmset->get_GM(gmset->UNITY);
105  // these 4 gamma matrices are actually not used.
106 
107  delete gmset;
108 
109  m_fee_inv = new Field_F(m_Nvol2, m_Nc * m_Nd);
110  m_foo_inv = new Field_F(m_Nvol2, m_Nc * m_Nd);
111 
112  m_vf.reset(m_Nvol2, 1);
113  m_ff.reset(m_Nvol2, 1);
114 }
115 
116 
117 //====================================================================
119 {
120  delete m_foo_inv;
121  delete m_fee_inv;
122 }
123 
124 
125 //====================================================================
127 {
128  const string str_vlevel = params.get_string("verbose_level");
129 
130  m_vl = vout.set_verbose_level(str_vlevel);
131 
132  //- fetch and check input parameters
133  double kappa, cSW;
134  valarray<int> bc;
135 
136  int err = 0;
137  err += params.fetch_double("hopping_parameter", kappa);
138  err += params.fetch_double("clover_coefficient", cSW);
139  err += params.fetch_int_vector("boundary_condition", bc);
140 
141  if (err) {
142  vout.crucial(m_vl, "%s: fetch error, input parameter not found.\n", class_name.c_str());
143  abort();
144  }
145 
146  set_parameters(kappa, cSW, bc);
147 }
148 
149 
150 //====================================================================
151 void Fopr_CloverTerm_eo::set_parameters(const double kappa, const double cSW,
152  const std::valarray<int> bc)
153 {
154  //- print input parameters
155  vout.general(m_vl, "Parameters of %s:\n", class_name.c_str());
156  vout.general(m_vl, " kappa = %8.4f\n", kappa);
157  vout.general(m_vl, " cSW = %8.4f\n", cSW);
158  for (int mu = 0; mu < m_Ndim; ++mu) {
159  vout.general(m_vl, " boundary[%d] = %2d\n", mu, bc[mu]);
160  }
161 
162  //- range check
163  // NB. kappa,cSW == 0 is allowed.
164  assert(bc.size() == m_Ndim);
165 
166  //- store values
167  m_kappa = kappa;
168  m_cSW = cSW;
169  assert(bc.size() == m_Ndim);
170  for (int mu = 0; mu < m_Ndim; ++mu) {
171  m_boundary[mu] = bc[mu];
172  }
173 }
174 
175 
176 //====================================================================
178 {
179  m_Ueo = (Field_G *)Ueo;
180 
181  set_csw();
182  solve_csw_inv();
183 }
184 
185 
186 //====================================================================
188 {
189  double eps2 = CommonParameters::epsilon_criterion2();
190 
191  Parameters *params_solver = ParametersFactory::New("Solver");
192 
193  params_solver->set_string("solver_type", "CG");
194  params_solver->set_int("maximum_number_of_iteration", 1000);
195  params_solver->set_double("convergence_criterion_squared", 1.0e-30);
196  //- NB. set VerboseLevel to CRUCIAL to suppress frequent messages.
197  params_solver->set_string("verbose_level", "Crucial");
198 
199  int Nconv;
200  double diff;
201 
202  Solver *solver = new Solver_CG(this);
203  solver->set_parameters(*params_solver);
204 
205  Field_F w(m_Nvol2);
206  Field_F w2(m_Nvol2);
207 
208  for (int ispin = 0; ispin < m_Nd; ++ispin) {
209  for (int icolor = 0; icolor < m_Nc; ++icolor) {
210  int spin_color = icolor + m_Nc * ispin;
211  w = 0.0;
212  for (int isite = 0; isite < m_Nvol2; ++isite) {
213  w.set_ri(icolor, ispin, isite, 0, 1, 0);
214  }
215 
216  if (m_cSW * m_cSW < eps2) {
217  m_fee_inv->setpart_ex(spin_color, w, 0);
218  m_foo_inv->setpart_ex(spin_color, w, 0);
219  } else {
220  set_mode("even");
221  solver->solve(w2, w, Nconv, diff);
222  m_fee_inv->setpart_ex(spin_color, w2, 0);
223  vout.detailed(m_vl, " Nconv,diff = %d %12.4e\n", Nconv, diff);
224 
225  set_mode("odd");
226  solver->solve(w2, w, Nconv, diff);
227  m_foo_inv->setpart_ex(spin_color, w2, 0);
228  vout.detailed(m_vl, " Nconv,diff = %d %12.4e\n", Nconv, diff);
229  }
230  }
231  }
232 
233  delete params_solver;
234  delete solver;
235 
236  // redefine the inverse matrix with its dagger.
237  double re, im;
238  for (int ics = 0; ics < m_Nc * m_Nd; ++ics) {
239  for (int site = 0; site < m_Nvol2; ++site) {
240  for (int id = 0; id < m_Nd; ++id) {
241  for (int ic = 0; ic < m_Nc; ++ic) {
242  re = m_foo_inv->cmp_r(ic, id, site, ics);
243  im = m_foo_inv->cmp_i(ic, id, site, ics);
244  m_foo_inv->set_ri(ic, id, site, ics, re, -im);
245 
246  re = m_fee_inv->cmp_r(ic, id, site, ics);
247  im = m_fee_inv->cmp_i(ic, id, site, ics);
248  m_fee_inv->set_ri(ic, id, site, ics, re, -im);
249  }
250  }
251  }
252  }
253 }
254 
255 
256 //====================================================================
257 const Field_F Fopr_CloverTerm_eo::mult_csw_inv(const Field_F& f, const int ieo)
258 {
259  int nex = f.nex();
260  Field_F w(m_Nvol2, nex);
261 
262  mult_csw_inv(w, f, ieo);
263 
264  return w;
265 }
266 
267 
268 //====================================================================
270  const Field& f, const int ieo)
271 {
272  if (m_repr == "Dirac") {
273  mult_csw_inv_dirac(v, f, ieo);
274  } else if (m_repr == "Chiral") {
275  mult_csw_inv_chiral(v, f, ieo);
276  }
277 }
278 
279 
280 //====================================================================
282  const Field& f, const int ieo)
283 {
284  int Nvc = 2 * m_Nc;
285 
286  double *v1 = const_cast<Field *>(&f)->ptr(0);
287  double *v2 = v.ptr(0);
288  double *csw_inv;
289 
290  if (ieo == 0) {
291  csw_inv = m_fee_inv->ptr(0);
292  } else if (ieo == 1) {
293  csw_inv = m_foo_inv->ptr(0);
294 
295  /*
296  } else {
297  vout.crucial(m_vl, "%s: wrong parameter, ieo = %d.\n",
298  class_name.c_str(), ieo);
299  abort();
300  */
301  }
302 
303  // threadding applied.
306  int is = m_Nvol2 * ith / nth;
307  int ns = m_Nvol2 * (ith + 1) / nth;
308 
309  int Nd2 = m_Nd / 2;
310  for (int site = is; site < ns; ++site) {
311  for (int icd = 0; icd < m_Nc * Nd2; ++icd) {
312  int iv2 = 2 * icd + m_NinF * site;
313  v2[iv2] = 0.0;
314  v2[iv2 + 1] = 0.0;
315  for (int jd = 0; jd < m_Nd; ++jd) {
316  int jcd = Nvc * jd;
317  int iv = jcd + m_NinF * site;
318  int ig = jcd + m_NinF * (site + m_Nvol2 * icd);
319  v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
320  v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
321  }
322  }
323 
324  for (int icd = 0; icd < m_Nc * Nd2; ++icd) {
325  int iv2 = 2 * (icd + m_Nc * Nd2) + m_NinF * site;
326  v2[iv2] = 0.0;
327  v2[iv2 + 1] = 0.0;
328  for (int jd = 0; jd < m_Nd; ++jd) {
329  int jd2 = (jd + Nd2) % m_Nd;
330  int iv = Nvc * jd + m_NinF * site;
331  int ig = Nvc * jd2 + m_NinF * (site + m_Nvol2 * icd);
332  v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
333  v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
334  }
335  }
336  }
337 #pragma omp barrier
338 }
339 
340 
341 //====================================================================
343  const Field& f, const int ieo)
344 {
345  int Nvc = 2 * m_Nc;
346 
347  double *v1 = const_cast<Field *>(&f)->ptr(0);
348  double *v2 = v.ptr(0);
349  double *csw_inv;
350 
351  if (ieo == 0) {
352  csw_inv = m_fee_inv->ptr(0);
353  } else if (ieo == 1) {
354  csw_inv = m_foo_inv->ptr(0);
355 
356  /*
357  } else {
358  vout.crucial(m_vl, "%s: wrong parameter, ieo = %d.\n",
359  class_name.c_str(), ieo);
360  abort();
361  */
362  }
363 
364  // threadding applied.
367  int is = m_Nvol2 * ith / nth;
368  int ns = m_Nvol2 * (ith + 1) / nth;
369 
370  for (int site = is; site < ns; ++site) {
371  for (int icd = 0; icd < m_Nc * m_Nd / 2; ++icd) {
372  int iv2 = 2 * icd + m_NinF * site;
373  v2[iv2] = 0.0;
374  v2[iv2 + 1] = 0.0;
375 
376  for (int jd = 0; jd < m_Nd / 2; ++jd) {
377  int jcd = Nvc * jd;
378  int iv = jcd + m_NinF * site;
379  int ig = jcd + m_NinF * (site + m_Nvol2 * icd);
380  v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
381  v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
382  }
383  }
384 
385  for (int icd = m_Nc * m_Nd / 2; icd < m_Nc * m_Nd; ++icd) {
386  int iv2 = 2 * icd + m_NinF * site;
387  v2[iv2] = 0.0;
388  v2[iv2 + 1] = 0.0;
389 
390  for (int jd = m_Nd / 2; jd < m_Nd; ++jd) {
391  int jcd = Nvc * jd;
392  int iv = jcd + m_NinF * site;
393  int ig = jcd + m_NinF * (site + m_Nvol2 * icd);
394  v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
395  v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
396  }
397  }
398  }
399 #pragma omp barrier
400 }
401 
402 
403 //====================================================================
404 std::vector<double> Fopr_CloverTerm_eo::csmatrix(const int& site)
405 {
406  std::vector<double> matrix(m_Nc * m_Nc * m_Nd * m_Nd * 2);
407 
408  for (int ispin = 0; ispin < m_Nd / 2; ++ispin) {
409  for (int icolor = 0; icolor < m_Nc; ++icolor) {
410  int ics = icolor + ispin * m_Nc;
411  for (int jspin = 0; jspin < m_Nd; ++jspin) {
412  int js2 = (jspin + m_Nd / 2) % m_Nd;
413  for (int jcolor = 0; jcolor < m_Nc; ++jcolor) {
414  int cs1 = jcolor + m_Nc * (jspin + m_Nd * ics);
415  int cs2 = jcolor + m_Nc * (jspin + m_Nd * (ics + m_Nc * m_Nd / 2));
416  int cc = jcolor + icolor * m_Nc;
417  int ss1 = jspin + ispin * m_Nd;
418  int ss2 = js2 + ispin * m_Nd;
419 
420  matrix[2 * cs1] = m_T.cmp_r(cc, site, ss1);
421  matrix[2 * cs1 + 1] = m_T.cmp_i(cc, site, ss1);
422 
423  matrix[2 * cs2] = m_T.cmp_r(cc, site, ss2);
424  matrix[2 * cs2 + 1] = m_T.cmp_i(cc, site, ss2);
425  }
426  }
427  }
428  }
429 
430  return matrix;
431 }
432 
433 
434 //====================================================================
435 void Fopr_CloverTerm_eo::D(Field& v, const Field& f, const int ieo)
436 {
437  if (m_repr == "Dirac") {
438  D_dirac(v, f, ieo);
439  } else if (m_repr == "Chiral") {
440  D_chiral(v, f, ieo);
441  }
442 }
443 
444 
445 //====================================================================
446 void Fopr_CloverTerm_eo::D_dirac(Field& v, const Field& f, const int ieo)
447 {
448  // assert(f.nvol() == m_Nvol2);
449  // assert(f.nex() == 1);
450  // assert(v.nvol() == m_Nvol2);
451  // assert(v.nex() == 1);
452 
453  double *fp = const_cast<Field *>(&f)->ptr(0);
454  double *vp = v.ptr(0);
455  double *tp = m_T.ptr(0, m_Nvol2 * ieo, 0);
456 
459  int is = m_Nvol2 * ith / nth;
460  int ns = m_Nvol2 * (ith + 1) / nth;
461 
462  int Nvc = 2 * m_Nc;
463  int Nd2 = m_Nd / 2;
464  int NinF = 2 * m_Nc * m_Nd;
465  int NinG = 2 * m_Nc * m_Nc;
466 
467  for (int site = is; site < ns; ++site) {
468  for (int id = 0; id < Nd2; ++id) {
469  for (int ic = 0; ic < m_Nc; ++ic) {
470  int icd = ic + m_Nc * id;
471 
472  int iv2 = 2 * icd + NinF * site;
473  vp[iv2] = 0.0;
474  vp[iv2 + 1] = 0.0;
475  for (int jd = 0; jd < m_Nd; ++jd) {
476  int iv = Nvc * jd + NinF * site;
477  int ig = Nvc * ic + NinG * (site + m_Nvol * (id * m_Nd + jd));
478  vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
479  vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
480  }
481 
482  iv2 += Nvc * Nd2;
483  vp[iv2] = 0.0;
484  vp[iv2 + 1] = 0.0;
485  for (int jd = 0; jd < m_Nd; ++jd) {
486  int jd2 = (2 + jd) % m_Nd;
487  int iv = Nvc * jd + NinF * site;
488  int ig = Nvc * ic + NinG * (site + m_Nvol * (id * m_Nd + jd2));
489  vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
490  vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
491  }
492  }
493  }
494  }
495 #pragma omp barrier
496 }
497 
498 
499 //====================================================================
500 void Fopr_CloverTerm_eo::D_chiral(Field& v, const Field& f, const int ieo)
501 {
502  double *fp = const_cast<Field *>(&f)->ptr(0);
503  double *vp = v.ptr(0);
504  double *tp = m_T.ptr(0, m_Nvol2 * ieo, 0);
505 
508  int is = m_Nvol2 * ith / nth;
509  int ns = m_Nvol2 * (ith + 1) / nth;
510 
511  int Nvc = 2 * m_Nc;
512  int Nd2 = m_Nd / 2;
513  int NinF = 2 * m_Nc * m_Nd;
514  int NinG = 2 * m_Nc * m_Nc;
515 
516  for (int site = is; site < ns; ++site) {
517  for (int id = 0; id < Nd2; ++id) {
518  for (int ic = 0; ic < m_Nc; ++ic) {
519  int icd = ic + m_Nc * id;
520 
521  int iv2 = 2 * icd + NinF * site;
522  vp[iv2] = 0.0;
523  vp[iv2 + 1] = 0.0;
524  for (int jd = 0; jd < Nd2; ++jd) {
525  int iv = Nvc * jd + NinF * site;
526  int ig = Nvc * ic + NinG * (site + m_Nvol * (id * Nd2 + jd));
527  vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
528  vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
529  }
530 
531  iv2 += Nvc * Nd2;
532  vp[iv2] = 0.0;
533  vp[iv2 + 1] = 0.0;
534  for (int jd = 0; jd < Nd2; ++jd) {
535  int iv = Nvc * (Nd2 + jd) + NinF * site;
536  int ig = Nvc * ic + NinG * (site + m_Nvol * (m_Nd + id * Nd2 + jd));
537  vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
538  vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
539  }
540  }
541  }
542  }
543 #pragma omp barrier
544 }
545 
546 
547 //====================================================================
549  const int mu, const int nu)
550 {
551  assert(mu != nu);
552  mult_iGM(v, m_SG[sg_index(mu, nu)], w);
553 }
554 
555 
556 //====================================================================
558 {
559  if (m_repr == "Dirac") {
560  set_csw_dirac();
561  } else if (m_repr == "Chiral") {
562  set_csw_chiral();
563  } else {
564  vout.crucial(m_vl, "%s: unsupported gamma matrix repr. %s.\n",
565  class_name.c_str(), m_repr.c_str());
566  abort();
567  }
568 }
569 
570 
571 //====================================================================
573 {
574  // The clover term in the Dirac representation is as spin-space
575  // matrix
576  // [ P Q ]
577  // [ Q P ],
578  // where P and Q are 2x2 block matrices as
579  // P = [ iF(1,2) F(3,1) + iF(2,3) ]
580  // [-F(3,1) + iF(2,3) - iF(1,2) ]
581  // and
582  // Q = [ - iF(4,3) -F(4,2) - iF(4,1) ]
583  // [ F(4,2) - iF(4,1) iF(4,3) ]
584  // up to the coefficient.
585  // in the following what defined is
586  // [ P Q ] = [ T(0) T(1) T(2) T(3) ]
587  // [ T(4) T(5) T(6) T(7) ].
588 
589  m_T.set(0.0);
590 
591  //- sigma23
592  Field_G F;
593  set_fieldstrength(F, 1, 2);
594  F.xI();
595  axpy(m_T, 1, 1.0, F, 0);
596  axpy(m_T, 4, 1.0, F, 0);
597 
598  //- sigma31
599  set_fieldstrength(F, 2, 0);
600  axpy(m_T, 1, 1.0, F, 0);
601  axpy(m_T, 4, -1.0, F, 0);
602 
603  //- sigma12
604  set_fieldstrength(F, 0, 1);
605  F.xI();
606  axpy(m_T, 0, 1.0, F, 0);
607  axpy(m_T, 5, -1.0, F, 0);
608 
609  //- sigma41
610  set_fieldstrength(F, 3, 0);
611  F.xI();
612  axpy(m_T, 3, -1.0, F, 0);
613  axpy(m_T, 6, -1.0, F, 0);
614 
615  //- sigma42
616  set_fieldstrength(F, 3, 1);
617  axpy(m_T, 3, -1.0, F, 0);
618  axpy(m_T, 6, 1.0, F, 0);
619 
620  //- sigma43
621  set_fieldstrength(F, 3, 2);
622  F.xI();
623  axpy(m_T, 2, -1.0, F, 0);
624  axpy(m_T, 7, 1.0, F, 0);
625 
626  scal(m_T, -m_kappa * m_cSW);
627 
628  Field_G Unity(m_Nvol, 1);
629  Unity.set_unit();
630  axpy(m_T, 0, 1.0, Unity, 0);
631  axpy(m_T, 5, 1.0, Unity, 0);
632 }
633 
634 
635 //====================================================================
637 {
638  // The clover term in the Dirac representation is
639  // as spin-space matrix
640  // [ P+Q 0 ]
641  // [ 0 P-Q ],
642  // where P and Q are 2x2 block matrices as
643  // [ iF(1,2) | F(3,1) + iF(2,3) ]
644  // P = [ -----------------+------------------ ]
645  // [-F(3,1) + iF(2,3) | - iF(1,2) ]
646  // and
647  // [ - iF(4,3) | -F(4,2) - iF(4,1) ]
648  // Q = [ -----------------+------------------ ]
649  // [ F(4,2) - iF(4,1) | iF(4,3) ]
650  // up to the coefficient.
651  // in the following what defined is
652  // [ T(0) | T(1) ] [ T(4) | T(5) ]
653  // P+Q = [ -----+----- ] P - Q = [ -----+----- ]
654  // [ T(2) | T(3) ] [ T(6) | T(7) ]
655 
656  m_T.set(0.0);
657 
658  Field_G F;
659 
660  //- sigma23
661  set_fieldstrength(F, 1, 2);
662  F.xI();
663  axpy(m_T, 1, 1.0, F, 0);
664  axpy(m_T, 2, 1.0, F, 0);
665  axpy(m_T, 5, 1.0, F, 0);
666  axpy(m_T, 6, 1.0, F, 0);
667 
668  //- sigma31
669  set_fieldstrength(F, 2, 0);
670  axpy(m_T, 1, 1.0, F, 0);
671  axpy(m_T, 2, -1.0, F, 0);
672  axpy(m_T, 5, 1.0, F, 0);
673  axpy(m_T, 6, -1.0, F, 0);
674 
675  //- sigma12
676  set_fieldstrength(F, 0, 1);
677  F.xI();
678  axpy(m_T, 0, 1.0, F, 0);
679  axpy(m_T, 3, -1.0, F, 0);
680  axpy(m_T, 4, 1.0, F, 0);
681  axpy(m_T, 7, -1.0, F, 0);
682 
683  //- sigma41
684  set_fieldstrength(F, 3, 0);
685  F.xI();
686  axpy(m_T, 1, -1.0, F, 0);
687  axpy(m_T, 2, -1.0, F, 0);
688  axpy(m_T, 5, 1.0, F, 0);
689  axpy(m_T, 6, 1.0, F, 0);
690 
691  //- sigma42
692  set_fieldstrength(F, 3, 1);
693  axpy(m_T, 1, -1.0, F, 0);
694  axpy(m_T, 2, 1.0, F, 0);
695  axpy(m_T, 5, 1.0, F, 0);
696  axpy(m_T, 6, -1.0, F, 0);
697 
698  //- sigma43
699  set_fieldstrength(F, 3, 2);
700  F.xI();
701  axpy(m_T, 0, -1.0, F, 0);
702  axpy(m_T, 3, 1.0, F, 0);
703  axpy(m_T, 4, 1.0, F, 0);
704  axpy(m_T, 7, -1.0, F, 0);
705 
706  scal(m_T, -m_kappa * m_cSW);
707 
708  Field_G Unity(m_Nvol, 1);
709  Unity.set_unit();
710  axpy(m_T, 0, 1.0, Unity, 0);
711  axpy(m_T, 3, 1.0, Unity, 0);
712  axpy(m_T, 4, 1.0, Unity, 0);
713  axpy(m_T, 7, 1.0, Unity, 0);
714 }
715 
716 
717 //====================================================================
719  const int mu, const int nu)
720 {
721  Staples_eo staple;
722 
723  Field_G Cup(m_Nvol, 1), Cdn(m_Nvol, 1);
724  Field_G Umu(m_Nvol, 1);
725  Field_G w(m_Nvol, 1), v(m_Nvol, 1), v2(m_Nvol, 1);
726 
727  Cup = staple.upper(m_Ueo, mu, nu);
728  Cdn = staple.lower(m_Ueo, mu, nu);
729  Umu.setpart_ex(0, *m_Ueo, mu);
730 
731  for (int site = 0; site < m_Nvol; ++site) {
732  w.set_mat(site, 0, Umu.mat(site) * Cup.mat_dag(site));
733  }
734 
735  for (int site = 0; site < m_Nvol; ++site) {
736  v2.set_mat(site, 0, Umu.mat(site) * Cdn.mat_dag(site));
737  }
738 
739  w -= v2;
740 
741  for (int site = 0; site < m_Nvol; ++site) {
742  v.set_mat(site, 0, Cup.mat_dag(site) * Umu.mat(site));
743  }
744 
745  for (int site = 0; site < m_Nvol; ++site) {
746  v2.set_mat(site, 0, Cdn.mat_dag(site) * Umu.mat(site));
747  }
748 
749  v -= v2;
750 
751  m_shift_eo.forward(v2, v, mu);
752 
753  w += v2;
754 
755  for (int site = 0; site < m_Nvol; ++site) {
756  Fst.set_mat(site, 0, w.mat(site).ah());
757  }
758 
759  Fst *= 0.25;
760 }
761 
762 
763 //====================================================================
764 const Field_G Fopr_CloverTerm_eo::trSigmaInv(const int mu, const int nu)
765 {
766  int nex_finv = m_fee_inv->nex();
767  Vec_SU_N v;
768  Field_F sigma_inv(m_Nvol, nex_finv);
769  Field_G tr_sigma_inv(m_Nvol, 1);
770 
771  {
772  Field_F sigma_eo_inv(m_Nvol2, nex_finv);
773  mult_isigma(sigma_eo_inv, *m_fee_inv, mu, nu);
774  m_idx.reverseField(sigma_inv, sigma_eo_inv, 0);
775  mult_isigma(sigma_eo_inv, *m_foo_inv, mu, nu);
776  m_idx.reverseField(sigma_inv, sigma_eo_inv, 1);
777  }
778 
779  for (int isite = 0; isite < m_Nvol; ++isite) {
780  for (int ispin = 0; ispin < m_Nd; ++ispin) {
781  for (int icolor = 0; icolor < m_Nc; ++icolor) {
782  v = sigma_inv.vec(ispin, isite, icolor + m_Nc * ispin);
783  for (int jcolor = 0; jcolor < m_Nc; ++jcolor) {
784  int cc = icolor + m_Nc * jcolor;
785  tr_sigma_inv.set_r(cc, isite, 0, v.r(jcolor));
786  tr_sigma_inv.set_i(cc, isite, 0, v.i(jcolor));
787  }
788  }
789  }
790  }
791  return tr_sigma_inv;
792 }
793 
794 
795 //====================================================================
797 {
798  // The following counting explicitly depends on the implementation
799  // and to be recalculated when the code is modified.
800  // Present counting is based on rev.1107. [24 Aug 2014 H.Matsufuru]
801 
802  int Lvol = CommonParameters::Lvol();
803  double flop_site = 0.0;
804 
805  if (m_repr == "Dirac") {
806  flop_site = static_cast<double>(8 * m_Nc * m_Nc * m_Nd * m_Nd);
807  } else if (m_repr == "Chiral") {
808  flop_site = static_cast<double>(4 * m_Nc * m_Nc * m_Nd * m_Nd);
809  }
810 
811  double flop = flop_site * static_cast<double>(Lvol / 2);
812 
813  return flop;
814 }
815 
816 
817 //====================================================================
818 //============================================================END=====
Staple construction.
Definition: staples_eo.h:33
void scal(Field &x, const double a)
scal(x, a): x = a * x
Definition: field.cpp:310
void D_chiral(Field &v, const Field &f, const int ieo)
explicit implementation for Chiral representation (for Imp-version).
BridgeIO vout
Definition: bridgeIO.cpp:207
void init(std::string repr)
double cmp_i(const int cc, const int s, const int site, const int e=0) const
Definition: field_F.h:100
void detailed(const char *format,...)
Definition: bridgeIO.cpp:50
static int get_num_threads()
returns available number of threads.
void Register_string(const string &, const string &)
Definition: parameters.cpp:352
double r(const int c) const
Definition: vec_SU_N.h:65
void set(const int jin, const int site, const int jex, double v)
Definition: field.h:128
void general(const char *format,...)
Definition: bridgeIO.cpp:38
GammaMatrix get_GM(GMspecies spec)
void set_int(const string &key, const int value)
Definition: parameters.cpp:262
double * ptr(const int jin, const int site, const int jex)
Definition: field.h:118
Container of Field-type object.
Definition: field.h:37
void D_dirac(Field &v, const Field &f, const int ieo)
explicit implementation for Dirac representation (for Imp-version).
double cmp_i(const int cc, const int site, const int mn=0) const
Definition: field_G.h:88
Field_G m_T
m_T = 1 - kappa c_SW sigma F / 2
void set_csw_dirac()
explicit implementation for Dirac representation (for Imp-version).
std::valarray< GammaMatrix > m_SG
const Field_G * m_Ueo
Class for parameters.
Definition: parameters.h:40
void mult_csw_inv_chiral(Field &, const Field &, const int ieo)
static int Lvol()
void set_parameters(const Parameters &params)
static Parameters * New(const std::string &realm)
Standard Conjugate Gradient solver algorithm.
Definition: solver_CG.h:41
int fetch_int_vector(const string &key, std::valarray< int > &val) const
Definition: parameters.cpp:176
static int get_thread_id()
returns thread id.
Wilson-type fermion field.
Definition: field_F.h:37
virtual void set_parameters(const Parameters &params)=0
void set_unit()
Definition: field_G_imp.cpp:39
void set_string(const string &key, const string &value)
Definition: parameters.cpp:298
SU(N) gauge field.
Definition: field_G.h:36
static double epsilon_criterion2()
void reset(int Nvol, int Nex)
Definition: field_F.h:81
static const std::string class_name
const Field_F mult_csw_inv(const Field_F &, const int ieo)
void mult_iGM(Field_F &y, const GammaMatrix &gm, const Field_F &x)
gamma matrix multiplication (i is multiplied)
Definition: field_F_imp.cpp:94
void mult_isigma(Field_F &, const Field_F &, const int mu, const int nu)
double i(const int c) const
Definition: vec_SU_N.h:67
void set_ri(const int cc, const int s, const int site, const int e, const double re, const double im)
Definition: field_F.h:116
Bridge::VerboseLevel m_vl
Definition: fopr.h:99
const Field D(const Field &f, const int ieo)
void set_i(const int cc, const int site, const int mn, const double im)
Definition: field_G.h:98
Set of Gamma Matrices: basis class.
Field_G upper(const Field_G *, const int, const int)
Definition: staples_eo.cpp:89
int nex() const
Definition: field.h:102
void set_fieldstrength(Field_G &, const int, const int)
void set_r(const int cc, const int site, const int mn, const double re)
Definition: field_G.h:93
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
Definition: field.cpp:193
void crucial(const char *format,...)
Definition: bridgeIO.cpp:26
Base class for linear solver class family.
Definition: solver.h:37
static bool Register(const std::string &realm, const creator_callback &cb)
void set_double(const string &key, const double value)
Definition: parameters.cpp:271
void set_mode(std::string mode)
setting the mode of multiplication if necessary. Default implementation here is just to avoid irrelev...
void reverseField(Field &lex, const Field &eo)
Definition: index_eo.cpp:110
void forward(Field &, const Field &, const int mu)
Vec_SU_N vec(const int s, const int site, const int e=0) const
Definition: field_F.h:122
Mat_SU_N mat_dag(const int site, const int mn=0) const
Definition: field_G.h:123
const Field_G trSigmaInv(const int mu, const int nu)
Field_G lower(const Field_G *, const int, const int)
Definition: staples_eo.cpp:112
std::valarray< int > m_boundary
void Register_double(const string &, const double)
Definition: parameters.cpp:324
double cmp_r(const int cc, const int site, const int mn=0) const
Definition: field_G.h:83
void Register_int_vector(const string &, const std::valarray< int > &)
Definition: parameters.cpp:345
void setpart_ex(int ex, const Field &w, int exw)
Definition: field.h:150
int fetch_double(const string &key, double &val) const
Definition: parameters.cpp:124
string get_string(const string &key) const
Definition: parameters.cpp:85
void set_mat(const int site, const int mn, const Mat_SU_N &U)
Definition: field_G.h:156
void set_csw_chiral()
explicit implementation for Chiral representation (for Imp-version).
void mult_csw_inv_dirac(Field &, const Field &, const int ieo)
std::valarray< GammaMatrix > m_GM
Gamma Matrix and Sigma_{mu,nu} = -i [Gamma_mu, Gamma_nu] /2.
double flop_count()
retuns number of floating point number operations.
std::vector< double > csmatrix(const int &)
Mat_SU_N mat(const int site, const int mn=0) const
Definition: field_G.h:110
int sg_index(int mu, int nu)
ShiftField_eo m_shift_eo
virtual void solve(Field &solution, const Field &source, int &Nconv, double &diff)=0
static VerboseLevel set_verbose_level(const std::string &str)
Definition: bridgeIO.cpp:191
void set_config(Field *Ueo)
setting pointer to the gauge configuration.
void xI()
Definition: field_G.h:180
double cmp_r(const int cc, const int s, const int site, const int e=0) const
Definition: field_F.h:94