19 #ifdef USE_PARAMETERS_FACTORY
24 #if defined USE_GROUP_SU3
25 #include "fopr_Wilson_impl_SU3.inc"
26 #elif defined USE_GROUP_SU2
27 #include "fopr_Wilson_impl_SU2.inc"
28 #elif defined USE_GROUP_SU_N
29 #include "fopr_Wilson_impl_SU_N.inc"
45 #ifdef USE_PARAMETERS_FACTORY
54 { append_entry(*
this); }
127 const string str_vlevel = params.
get_string(
"verbose_level");
151 const std::vector<int> bc)
157 for (
int mu = 0; mu <
m_Ndim; ++mu) {
163 assert(bc.size() ==
m_Ndim);
168 assert(bc.size() ==
m_Ndim);
169 for (
int mu = 0; mu <
m_Ndim; ++mu) {
192 params_solver->
set_string(
"solver_type",
"CG");
193 params_solver->
set_int(
"maximum_number_of_iteration", 1000);
194 params_solver->
set_double(
"convergence_criterion_squared", 1.0e-30);
196 params_solver->
set_string(
"verbose_level",
"Crucial");
207 for (
int ispin = 0; ispin <
m_Nd; ++ispin) {
208 for (
int icolor = 0; icolor <
m_Nc; ++icolor) {
209 int spin_color = icolor + m_Nc * ispin;
211 for (
int isite = 0; isite <
m_Nvol2; ++isite) {
212 w.set_ri(icolor, ispin, isite, 0, 1, 0);
220 solver->
solve(w2, w, Nconv, diff);
225 solver->
solve(w2, w, Nconv, diff);
232 delete params_solver;
237 for (
int ics = 0; ics < m_Nc *
m_Nd; ++ics) {
238 for (
int site = 0; site <
m_Nvol2; ++site) {
239 for (
int id = 0;
id <
m_Nd; ++id) {
240 for (
int ic = 0; ic <
m_Nc; ++ic) {
271 const Field& f,
const int ieo)
275 }
else if (
m_repr ==
"Chiral") {
283 const Field& f,
const int ieo)
287 const double *
v1 = f.
ptr(0);
288 double *
v2 = v.
ptr(0);
293 }
else if (ieo == 1) {
309 int is = m_Nvol2 * ith / nth;
310 int ns = m_Nvol2 * (ith + 1) / nth;
313 for (
int site = is; site < ns; ++site) {
314 for (
int icd = 0; icd < m_Nc * Nd2; ++icd) {
315 int iv2 = 2 * icd +
m_NinF * site;
318 for (
int jd = 0; jd <
m_Nd; ++jd) {
320 int iv = jcd +
m_NinF * site;
321 int ig = jcd +
m_NinF * (site + m_Nvol2 * icd);
322 v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
323 v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
327 for (
int icd = 0; icd < m_Nc * Nd2; ++icd) {
328 int iv2 = 2 * (icd + m_Nc * Nd2) +
m_NinF * site;
331 for (
int jd = 0; jd <
m_Nd; ++jd) {
332 int jd2 = (jd + Nd2) % m_Nd;
333 int iv = Nvc * jd +
m_NinF * site;
334 int ig = Nvc * jd2 +
m_NinF * (site + m_Nvol2 * icd);
335 v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
336 v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
346 const Field& f,
const int ieo)
350 const double *v1 = f.
ptr(0);
351 double *v2 = v.
ptr(0);
356 }
else if (ieo == 1) {
372 int is = m_Nvol2 * ith / nth;
373 int ns = m_Nvol2 * (ith + 1) / nth;
375 for (
int site = is; site < ns; ++site) {
376 for (
int icd = 0; icd < m_Nc * m_Nd / 2; ++icd) {
377 int iv2 = 2 * icd +
m_NinF * site;
381 for (
int jd = 0; jd < m_Nd / 2; ++jd) {
383 int iv = jcd +
m_NinF * site;
384 int ig = jcd +
m_NinF * (site + m_Nvol2 * icd);
385 v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
386 v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
390 for (
int icd = m_Nc * m_Nd / 2; icd < m_Nc *
m_Nd; ++icd) {
391 int iv2 = 2 * icd +
m_NinF * site;
395 for (
int jd = m_Nd / 2; jd <
m_Nd; ++jd) {
397 int iv = jcd +
m_NinF * site;
398 int ig = jcd +
m_NinF * (site + m_Nvol2 * icd);
399 v2[iv2] += mult_uv_r(&csw_inv[ig], &v1[iv], m_Nc);
400 v2[iv2 + 1] += mult_uv_i(&csw_inv[ig], &v1[iv], m_Nc);
411 std::vector<double> matrix(m_Nc * m_Nc * m_Nd * m_Nd * 2);
413 for (
int ispin = 0; ispin < m_Nd / 2; ++ispin) {
414 for (
int icolor = 0; icolor <
m_Nc; ++icolor) {
415 int ics = icolor + ispin *
m_Nc;
416 for (
int jspin = 0; jspin <
m_Nd; ++jspin) {
417 int js2 = (jspin + m_Nd / 2) % m_Nd;
418 for (
int jcolor = 0; jcolor <
m_Nc; ++jcolor) {
419 int cs1 = jcolor + m_Nc * (jspin + m_Nd * ics);
420 int cs2 = jcolor + m_Nc * (jspin + m_Nd * (ics + m_Nc * m_Nd / 2));
421 int cc = jcolor + icolor *
m_Nc;
422 int ss1 = jspin + ispin *
m_Nd;
423 int ss2 = js2 + ispin *
m_Nd;
425 matrix[2 * cs1] =
m_T.
cmp_r(cc, site, ss1);
426 matrix[2 * cs1 + 1] =
m_T.
cmp_i(cc, site, ss1);
428 matrix[2 * cs2] =
m_T.
cmp_r(cc, site, ss2);
429 matrix[2 * cs2 + 1] =
m_T.
cmp_i(cc, site, ss2);
444 }
else if (
m_repr ==
"Chiral") {
458 const double *fp = f.
ptr(0);
459 double *vp = v.
ptr(0);
460 double *tp =
m_T.
ptr(0, m_Nvol2 * ieo, 0);
464 int is = m_Nvol2 * ith / nth;
465 int ns = m_Nvol2 * (ith + 1) / nth;
469 int NinF = 2 * m_Nc *
m_Nd;
470 int NinG = 2 * m_Nc *
m_Nc;
472 for (
int site = is; site < ns; ++site) {
473 for (
int id = 0;
id < Nd2; ++id) {
474 for (
int ic = 0; ic <
m_Nc; ++ic) {
475 int icd = ic + m_Nc * id;
477 int iv2 = 2 * icd + NinF * site;
480 for (
int jd = 0; jd <
m_Nd; ++jd) {
481 int iv = Nvc * jd + NinF * site;
482 int ig = Nvc * ic + NinG * (site +
m_Nvol * (
id * m_Nd + jd));
483 vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
484 vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
490 for (
int jd = 0; jd <
m_Nd; ++jd) {
491 int jd2 = (2 + jd) % m_Nd;
492 int iv = Nvc * jd + NinF * site;
493 int ig = Nvc * ic + NinG * (site +
m_Nvol * (
id * m_Nd + jd2));
494 vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
495 vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
507 const double *fp = f.
ptr(0);
508 double *vp = v.
ptr(0);
509 double *tp =
m_T.
ptr(0, m_Nvol2 * ieo, 0);
513 int is = m_Nvol2 * ith / nth;
514 int ns = m_Nvol2 * (ith + 1) / nth;
518 int NinF = 2 * m_Nc *
m_Nd;
519 int NinG = 2 * m_Nc *
m_Nc;
521 for (
int site = is; site < ns; ++site) {
522 for (
int id = 0;
id < Nd2; ++id) {
523 for (
int ic = 0; ic <
m_Nc; ++ic) {
524 int icd = ic + m_Nc * id;
526 int iv2 = 2 * icd + NinF * site;
529 for (
int jd = 0; jd < Nd2; ++jd) {
530 int iv = Nvc * jd + NinF * site;
531 int ig = Nvc * ic + NinG * (site +
m_Nvol * (
id * Nd2 + jd));
532 vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
533 vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
539 for (
int jd = 0; jd < Nd2; ++jd) {
540 int iv = Nvc * (Nd2 + jd) + NinF * site;
541 int ig = Nvc * ic + NinG * (site +
m_Nvol * (m_Nd +
id * Nd2 + jd));
542 vp[iv2] += mult_uv_r(&tp[ig], &fp[iv], m_Nc);
543 vp[iv2 + 1] += mult_uv_i(&tp[ig], &fp[iv], m_Nc);
554 const int mu,
const int nu)
566 }
else if (
m_repr ==
"Chiral") {
724 const int mu,
const int nu)
734 Umu.setpart_ex(0, *
m_Ueo, mu);
736 for (
int site = 0; site <
m_Nvol; ++site) {
737 w.set_mat(site, 0, Umu.mat(site) * Cup.mat_dag(site));
740 for (
int site = 0; site <
m_Nvol; ++site) {
741 v2.set_mat(site, 0, Umu.mat(site) * Cdn.mat_dag(site));
746 for (
int site = 0; site <
m_Nvol; ++site) {
747 v.set_mat(site, 0, Cup.mat_dag(site) * Umu.mat(site));
750 for (
int site = 0; site <
m_Nvol; ++site) {
751 v2.set_mat(site, 0, Cdn.mat_dag(site) * Umu.mat(site));
760 for (
int site = 0; site <
m_Nvol; ++site) {
761 Fst.
set_mat(site, 0, w.mat(site).ah());
773 Field_F sigma_inv(m_Nvol, nex_finv);
776 assert(tr_sigma_inv.
nex() == 1);
779 Field_F sigma_eo_inv(m_Nvol2, nex_finv);
786 for (
int isite = 0; isite <
m_Nvol; ++isite) {
787 for (
int ispin = 0; ispin <
m_Nd; ++ispin) {
788 for (
int icolor = 0; icolor <
m_Nc; ++icolor) {
789 v = sigma_inv.vec(ispin, isite, icolor + m_Nc * ispin);
790 for (
int jcolor = 0; jcolor <
m_Nc; ++jcolor) {
791 int cc = icolor + m_Nc * jcolor;
792 tr_sigma_inv.
set_r(cc, isite, 0, v.
r(jcolor));
793 tr_sigma_inv.
set_i(cc, isite, 0, v.
i(jcolor));
809 double flop_site = 0.0;
812 flop_site =
static_cast<double>(8 * m_Nc * m_Nc * m_Nd *
m_Nd);
813 }
else if (
m_repr ==
"Chiral") {
814 flop_site =
static_cast<double>(4 * m_Nc * m_Nc * m_Nd *
m_Nd);
817 double flop = flop_site *
static_cast<double>(Lvol / 2);
void Register_int_vector(const string &, const std::vector< int > &)
void scal(Field &x, const double a)
scal(x, a): x = a * x
void D_chiral(Field &v, const Field &f, const int ieo)
explicit implementation for Chiral representation (for Imp-version).
void init(std::string repr)
double cmp_i(const int cc, const int s, const int site, const int e=0) const
void detailed(const char *format,...)
static int get_num_threads()
returns available number of threads.
void Register_string(const string &, const string &)
const double * ptr(const int jin, const int site, const int jex) const
double r(const int c) const
void set(const int jin, const int site, const int jex, double v)
Parameters_Fopr_CloverTerm_eo()
void general(const char *format,...)
GammaMatrix get_GM(GMspecies spec)
void set_int(const string &key, const int value)
Container of Field-type object.
void D_dirac(Field &v, const Field &f, const int ieo)
explicit implementation for Dirac representation (for Imp-version).
double cmp_i(const int cc, const int site, const int mn=0) const
Field_G m_T
m_T = 1 - kappa c_SW sigma F / 2
void set_csw_dirac()
explicit implementation for Dirac representation (for Imp-version).
void mult_csw_inv_chiral(Field &, const Field &, const int ieo)
void set_parameters(const Parameters ¶ms)
void mult_csw_inv(Field &, const Field &, const int ieo)
static Parameters * New(const std::string &realm)
Standard Conjugate Gradient solver algorithm.
std::vector< GammaMatrix > m_SG
static int get_thread_id()
returns thread id.
Wilson-type fermion field.
virtual void set_parameters(const Parameters ¶ms)=0
void D(Field &v, const Field &f, const int ieo)
void set_string(const string &key, const string &value)
static double epsilon_criterion2()
void reset(int Nvol, int Nex)
static const std::string class_name
void mult_iGM(Field_F &y, const GammaMatrix &gm, const Field_F &x)
gamma matrix multiplication (i is multiplied)
void mult_isigma(Field_F &, const Field_F &, const int mu, const int nu)
double i(const int c) const
void set_ri(const int cc, const int s, const int site, const int e, const double re, const double im)
Bridge::VerboseLevel m_vl
void set_i(const int cc, const int site, const int mn, const double im)
Set of Gamma Matrices: basis class.
void set_fieldstrength(Field_G &, const int, const int)
void set_r(const int cc, const int site, const int mn, const double re)
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
void crucial(const char *format,...)
std::vector< GammaMatrix > m_GM
Gamma Matrix and Sigma_{mu,nu} = -i [Gamma_mu, Gamma_nu] /2.
void trSigmaInv(Field_G &, const int mu, const int nu)
std::vector< int > m_boundary
Base class for linear solver class family.
static bool Register(const std::string &realm, const creator_callback &cb)
void set_double(const string &key, const double value)
void set_mode(std::string mode)
setting the mode of multiplication if necessary. Default implementation here is just to avoid irrelev...
void reverseField(Field &lex, const Field &eo)
void upper(Field_G &, const Field_G *, const int, const int)
void forward(Field &, const Field &, const int mu)
void Register_double(const string &, const double)
double cmp_r(const int cc, const int site, const int mn=0) const
void setpart_ex(int ex, const Field &w, int exw)
int fetch_double(const string &key, double &val) const
string get_string(const string &key) const
void set_mat(const int site, const int mn, const Mat_SU_N &U)
void set_csw_chiral()
explicit implementation for Chiral representation (for Imp-version).
void mult_csw_inv_dirac(Field &, const Field &, const int ieo)
double flop_count()
retuns number of floating point number operations.
std::vector< double > csmatrix(const int &)
void lower(Field_G &, const Field_G *, const int, const int)
int sg_index(int mu, int nu)
virtual void solve(Field &solution, const Field &source, int &Nconv, double &diff)=0
static VerboseLevel set_verbose_level(const std::string &str)
void set_config(Field *Ueo)
setting pointer to the gauge configuration.
int fetch_int_vector(const string &key, std::vector< int > &val) const
double cmp_r(const int cc, const int s, const int site, const int e=0) const