18 #if defined USE_GROUP_SU3
19 #include "fopr_Wilson_impl_SU3.inc"
20 #elif defined USE_GROUP_SU2
21 #include "fopr_Wilson_impl_SU2.inc"
22 #elif defined USE_GROUP_SU_N
23 #include "fopr_Wilson_impl_SU_N.inc"
41 #ifdef USE_PARAMETERS_FACTORY
56 const std::string str_vlevel = params.
get_string(
"verbose_level");
61 double kappa_s, kappa_t, cSW_s, cSW_t;
65 err += params.
fetch_double(
"hopping_parameter_spatial", kappa_s);
66 err += params.
fetch_double(
"hopping_parameter_temporal", kappa_t);
67 err += params.
fetch_double(
"clover_coefficient_spatial", cSW_s);
68 err += params.
fetch_double(
"clover_coefficient_temporal", cSW_t);
83 double cSW_s,
double cSW_t,
92 for (
int mu = 0; mu <
m_Ndim; ++mu) {
98 assert(bc.size() ==
m_Ndim);
107 for (
int mu = 0; mu <
m_Ndim; ++mu) {
165 }
else if (
m_repr ==
"Chiral") {
184 (this->*
m_gm5)(v, f);
194 const double *v1 = f.
ptr(0);
195 double *v2 = w.
ptr(0);
206 int is =
m_Nvol * i_thread / Nthread;
207 int ns =
m_Nvol * (i_thread + 1) / Nthread - is;
209 for (
int site = is; site < is + ns; ++site) {
211 for (
int icc = 0; icc < Nvc; icc++) {
212 int in = Nvc * Nd * site;
213 v2[icc + id1 + in] = v1[icc + id3 + in];
214 v2[icc + id2 + in] = v1[icc + id4 + in];
215 v2[icc + id3 + in] = v1[icc + id1 + in];
216 v2[icc + id4 + in] = v1[icc + id2 + in];
228 const double *v1 = f.
ptr(0);
229 double *v2 = w.
ptr(0);
240 int is =
m_Nvol * i_thread / Nthread;
241 int ns =
m_Nvol * (i_thread + 1) / Nthread - is;
243 for (
int site = is; site < is + ns; ++site) {
245 for (
int icc = 0; icc < Nvc; icc++) {
246 int in = Nvc * Nd * site;
247 v2[icc + id1 + in] = v1[icc + id1 + in];
248 v2[icc + id2 + in] = v1[icc + id2 + in];
249 v2[icc + id3 + in] = -v1[icc + id3 + in];
250 v2[icc + id4 + in] = -v1[icc + id4 + in];
258 const int mu,
const int nu)
275 (this->*
m_csw)(v, w);
282 assert(w.
nex() == 1);
285 const int Nvc = 2 * Nc;
286 const int Ndf = 2 * Nc * Nc;
288 const int Nvol = w.
nvol();
292 const int id3 = Nvc * 2;
293 const int id4 = Nvc * 3;
298 const double *w2 = w.
ptr(0);
299 double *v2 = v.
ptr(0);
312 int is =
m_Nvol * i_thread / Nthread;
313 int ns =
m_Nvol * (i_thread + 1) / Nthread - is;
315 for (
int site = is; site < is + ns; ++site) {
316 int iv = Nvc * Nd * site;
319 for (
int ic = 0; ic < Nc; ++ic) {
322 int icg = ic * Nvc + ig;
324 v2[icr + id1 + iv] = 0.0;
325 v2[ici + id1 + iv] = 0.0;
326 v2[icr + id2 + iv] = 0.0;
327 v2[ici + id2 + iv] = 0.0;
329 v2[icr + id3 + iv] = 0.0;
330 v2[ici + id3 + iv] = 0.0;
331 v2[icr + id4 + iv] = 0.0;
332 v2[ici + id4 + iv] = 0.0;
335 v2[icr + id1 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id2 + iv], Nc);
336 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id2 + iv], Nc);
337 v2[icr + id2 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id1 + iv], Nc);
338 v2[ici + id2 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id1 + iv], Nc);
340 v2[icr + id3 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id4 + iv], Nc);
341 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id4 + iv], Nc);
342 v2[icr + id4 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id3 + iv], Nc);
343 v2[ici + id4 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id3 + iv], Nc);
346 v2[icr + id1 + iv] += kappa_cSW_s * mult_uv_r(&By[icg], &w2[id2 + iv], Nc);
347 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_i(&By[icg], &w2[id2 + iv], Nc);
348 v2[icr + id2 + iv] -= kappa_cSW_s * mult_uv_r(&By[icg], &w2[id1 + iv], Nc);
349 v2[ici + id2 + iv] -= kappa_cSW_s * mult_uv_i(&By[icg], &w2[id1 + iv], Nc);
351 v2[icr + id3 + iv] += kappa_cSW_s * mult_uv_r(&By[icg], &w2[id4 + iv], Nc);
352 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_i(&By[icg], &w2[id4 + iv], Nc);
353 v2[icr + id4 + iv] -= kappa_cSW_s * mult_uv_r(&By[icg], &w2[id3 + iv], Nc);
354 v2[ici + id4 + iv] -= kappa_cSW_s * mult_uv_i(&By[icg], &w2[id3 + iv], Nc);
357 v2[icr + id1 + iv] -= kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id1 + iv], Nc);
358 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id1 + iv], Nc);
359 v2[icr + id2 + iv] += kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id2 + iv], Nc);
360 v2[ici + id2 + iv] -= kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id2 + iv], Nc);
362 v2[icr + id3 + iv] -= kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id3 + iv], Nc);
363 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id3 + iv], Nc);
364 v2[icr + id4 + iv] += kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id4 + iv], Nc);
365 v2[ici + id4 + iv] -= kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id4 + iv], Nc);
368 v2[icr + id1 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id2 + iv], Nc);
369 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id2 + iv], Nc);
370 v2[icr + id2 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id1 + iv], Nc);
371 v2[ici + id2 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id1 + iv], Nc);
373 v2[icr + id3 + iv] -= kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id4 + iv], Nc);
374 v2[ici + id3 + iv] += kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id4 + iv], Nc);
375 v2[icr + id4 + iv] -= kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id3 + iv], Nc);
376 v2[ici + id4 + iv] += kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id3 + iv], Nc);
379 v2[icr + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id2 + iv], Nc);
380 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id2 + iv], Nc);
381 v2[icr + id2 + iv] += kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id1 + iv], Nc);
382 v2[ici + id2 + iv] += kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id1 + iv], Nc);
384 v2[icr + id3 + iv] += kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id4 + iv], Nc);
385 v2[ici + id3 + iv] += kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id4 + iv], Nc);
386 v2[icr + id4 + iv] -= kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id3 + iv], Nc);
387 v2[ici + id4 + iv] -= kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id3 + iv], Nc);
390 v2[icr + id1 + iv] += kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id1 + iv], Nc);
391 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id1 + iv], Nc);
392 v2[icr + id2 + iv] -= kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id2 + iv], Nc);
393 v2[ici + id2 + iv] += kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id2 + iv], Nc);
395 v2[icr + id3 + iv] -= kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id3 + iv], Nc);
396 v2[ici + id3 + iv] += kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id3 + iv], Nc);
397 v2[icr + id4 + iv] += kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id4 + iv], Nc);
398 v2[ici + id4 + iv] -= kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id4 + iv], Nc);
408 assert(w.
nex() == 1);
411 const int Nvc = 2 * Nc;
412 const int Ndf = 2 * Nc * Nc;
414 const int Nvol = w.
nvol();
418 const int id3 = Nvc * 2;
419 const int id4 = Nvc * 3;
424 const double *w2 = w.
ptr(0);
425 double *v2 = v.
ptr(0);
438 int is =
m_Nvol * i_thread / Nthread;
439 int ns =
m_Nvol * (i_thread + 1) / Nthread - is;
441 for (
int site = is; site < is + ns; ++site) {
442 int iv = Nvc * Nd * site;
445 for (
int ic = 0; ic < Nc; ++ic) {
448 int icg = ic * Nvc + ig;
450 v2[icr + id1 + iv] = 0.0;
451 v2[ici + id1 + iv] = 0.0;
452 v2[icr + id2 + iv] = 0.0;
453 v2[ici + id2 + iv] = 0.0;
455 v2[icr + id3 + iv] = 0.0;
456 v2[ici + id3 + iv] = 0.0;
457 v2[icr + id4 + iv] = 0.0;
458 v2[ici + id4 + iv] = 0.0;
461 v2[icr + id1 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id2 + iv], Nc);
462 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id2 + iv], Nc);
463 v2[icr + id2 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id1 + iv], Nc);
464 v2[ici + id2 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id1 + iv], Nc);
466 v2[icr + id3 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id4 + iv], Nc);
467 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id4 + iv], Nc);
468 v2[icr + id4 + iv] -= kappa_cSW_s * mult_uv_i(&Bx[icg], &w2[id3 + iv], Nc);
469 v2[ici + id4 + iv] += kappa_cSW_s * mult_uv_r(&Bx[icg], &w2[id3 + iv], Nc);
472 v2[icr + id1 + iv] += kappa_cSW_s * mult_uv_r(&By[icg], &w2[id2 + iv], Nc);
473 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_i(&By[icg], &w2[id2 + iv], Nc);
474 v2[icr + id2 + iv] -= kappa_cSW_s * mult_uv_r(&By[icg], &w2[id1 + iv], Nc);
475 v2[ici + id2 + iv] -= kappa_cSW_s * mult_uv_i(&By[icg], &w2[id1 + iv], Nc);
477 v2[icr + id3 + iv] += kappa_cSW_s * mult_uv_r(&By[icg], &w2[id4 + iv], Nc);
478 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_i(&By[icg], &w2[id4 + iv], Nc);
479 v2[icr + id4 + iv] -= kappa_cSW_s * mult_uv_r(&By[icg], &w2[id3 + iv], Nc);
480 v2[ici + id4 + iv] -= kappa_cSW_s * mult_uv_i(&By[icg], &w2[id3 + iv], Nc);
483 v2[icr + id1 + iv] -= kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id1 + iv], Nc);
484 v2[ici + id1 + iv] += kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id1 + iv], Nc);
485 v2[icr + id2 + iv] += kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id2 + iv], Nc);
486 v2[ici + id2 + iv] -= kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id2 + iv], Nc);
488 v2[icr + id3 + iv] -= kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id3 + iv], Nc);
489 v2[ici + id3 + iv] += kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id3 + iv], Nc);
490 v2[icr + id4 + iv] += kappa_cSW_s * mult_uv_i(&Bz[icg], &w2[id4 + iv], Nc);
491 v2[ici + id4 + iv] -= kappa_cSW_s * mult_uv_r(&Bz[icg], &w2[id4 + iv], Nc);
494 v2[icr + id1 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id4 + iv], Nc);
495 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id4 + iv], Nc);
496 v2[icr + id2 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id3 + iv], Nc);
497 v2[ici + id2 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id3 + iv], Nc);
499 v2[icr + id3 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id2 + iv], Nc);
500 v2[ici + id3 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id2 + iv], Nc);
501 v2[icr + id4 + iv] += kappa_cSW_t * mult_uv_i(&Ex[icg], &w2[id1 + iv], Nc);
502 v2[ici + id4 + iv] -= kappa_cSW_t * mult_uv_r(&Ex[icg], &w2[id1 + iv], Nc);
505 v2[icr + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id4 + iv], Nc);
506 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id4 + iv], Nc);
507 v2[icr + id2 + iv] += kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id3 + iv], Nc);
508 v2[ici + id2 + iv] += kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id3 + iv], Nc);
510 v2[icr + id3 + iv] -= kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id2 + iv], Nc);
511 v2[ici + id3 + iv] -= kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id2 + iv], Nc);
512 v2[icr + id4 + iv] += kappa_cSW_t * mult_uv_r(&Ey[icg], &w2[id1 + iv], Nc);
513 v2[ici + id4 + iv] += kappa_cSW_t * mult_uv_i(&Ey[icg], &w2[id1 + iv], Nc);
516 v2[icr + id1 + iv] += kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id3 + iv], Nc);
517 v2[ici + id1 + iv] -= kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id3 + iv], Nc);
518 v2[icr + id2 + iv] -= kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id4 + iv], Nc);
519 v2[ici + id2 + iv] += kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id4 + iv], Nc);
521 v2[icr + id3 + iv] += kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id1 + iv], Nc);
522 v2[ici + id3 + iv] -= kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id1 + iv], Nc);
523 v2[icr + id4 + iv] -= kappa_cSW_t * mult_uv_i(&Ez[icg], &w2[id2 + iv], Nc);
524 v2[ici + id4 + iv] += kappa_cSW_t * mult_uv_r(&Ez[icg], &w2[id2 + iv], Nc);
545 const int mu,
const int nu)
549 assert(Nthread == 1);
586 double flop = flop_site *
static_cast<double>(Lvol);
void Register_int_vector(const string &, const std::vector< int > &)
void scal(Field &x, const double a)
scal(x, a): x = a * x
double flop_count()
this returns the number of floating point operations.
static int get_num_threads()
returns available number of threads.
void Register_string(const string &, const string &)
const double * ptr(const int jin, const int site, const int jex) const
void mult_Field_Gdn(Field_G &w, const int ex, const Field_G &u1, const int ex1, const Field_G &u2, const int ex2)
Parameters_Fopr_CloverTerm_General()
void general(const char *format,...)
GammaMatrix get_GM(GMspecies spec)
Container of Field-type object.
void init(std::string repr)
void set_fieldstrength(Field_G &, const int, const int)
void gm5_dirac(Field &, const Field &)
Field_G m_v2
for calculation of field strength.
void mult_csw_chiral(Field &, const Field &)
static int get_thread_id()
returns thread id.
Wilson-type fermion field.
void ah_Field_G(Field_G &w, const int ex)
std::vector< GammaMatrix > m_SG
void mult_csw_dirac(Field &, const Field &)
void multadd_Field_Gdn(Field_G &w, const int ex, const Field_G &u1, const int ex1, const Field_G &u2, const int ex2, const double ff)
void mult_Field_Gnd(Field_G &w, const int ex, const Field_G &u1, const int ex1, const Field_G &u2, const int ex2)
void mult_iGM(Field_F &y, const GammaMatrix &gm, const Field_F &x)
gamma matrix multiplication (i is multiplied)
void mult_gm5(Field &v, const Field &w)
Bridge::VerboseLevel m_vl
void set_config(Field *U)
setting pointer to the gauge configuration.
void mult_isigma(Field_F &, const Field_F &, const int mu, const int nu)
void mult_csw(Field &, const Field &)
void(Fopr_CloverTerm_General::* m_csw)(Field &, const Field &)
void set_parameters(const Parameters ¶ms)
void multadd_Field_Gnd(Field_G &w, const int ex, const Field_G &u1, const int ex1, const Field_G &u2, const int ex2, const double ff)
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
void gm5_chiral(Field &, const Field &)
void crucial(const char *format,...)
const Field_G * m_U
pointer to gauge configuration.
void mult_sigmaF(Field &, const Field &)
void lower(Field_G &, const Field_G &, const int mu, const int nu)
constructs lower staple in mu-nu plane.
static bool Register(const std::string &realm, const creator_callback &cb)
Field_G m_Ez
field strength.
std::vector< int > m_boundary
void(Fopr_CloverTerm_General::* m_gm5)(Field &, const Field &)
void Register_double(const string &, const double)
static const std::string class_name
int fetch_double(const string &key, double &val) const
string get_string(const string &key) const
void upper(Field_G &, const Field_G &, const int mu, const int nu)
constructs upper staple in mu-nu plane.
int sg_index(int mu, int nu)
static VerboseLevel set_verbose_level(const std::string &str)
int fetch_int_vector(const string &key, std::vector< int > &val) const
void forward(Field &, const Field &, const int mu)