Bridge++  Ver. 1.3.x
solver_BiCGStab_Cmplx.cpp
Go to the documentation of this file.
1 
14 #include "solver_BiCGStab_Cmplx.h"
15 
16 
17 #ifdef USE_FACTORY
18 namespace {
19  Solver *create_object(Fopr *fopr)
20  {
21  return new Solver_BiCGStab_Cmplx(fopr);
22  }
23 
24 
25  bool init = Solver::Factory::Register("BiCGStab_Cmplx", create_object);
26 }
27 #endif
28 
29 //- parameter entries
30 namespace {
31  void append_entry(Parameters& param)
32  {
33  param.Register_int("maximum_number_of_iteration", 0);
34  param.Register_double("convergence_criterion_squared", 0.0);
35 
36  param.Register_string("verbose_level", "NULL");
37  }
38 
39 
40 #ifdef USE_PARAMETERS_FACTORY
41  bool init_param = ParametersFactory::Register("Solver.BiCGStab_Cmplx",
42  append_entry);
43 #endif
44 }
45 //- end
46 
47 //- parameters class
49 { append_entry(*this); }
50 //- end
51 
52 const std::string Solver_BiCGStab_Cmplx::class_name = "Solver_BiCGStab_Cmplx";
53 
54 //====================================================================
56 {
57  const string str_vlevel = params.get_string("verbose_level");
58 
59  m_vl = vout.set_verbose_level(str_vlevel);
60 
61  //- fetch and check input parameters
62  int Niter;
63  double Stop_cond;
64 
65  int err = 0;
66  err += params.fetch_int("maximum_number_of_iteration", Niter);
67  err += params.fetch_double("convergence_criterion_squared", Stop_cond);
68 
69  if (err) {
70  vout.crucial(m_vl, "%s: fetch error, input parameter not found.\n",
71  class_name.c_str());
72  exit(EXIT_FAILURE);
73  }
74 
75  set_parameters(Niter, Stop_cond);
76 }
77 
78 
79 //====================================================================
81  const double Stop_cond)
82 {
84 
85  //- print input parameters
86  vout.general(m_vl, "%s: input parameters\n", class_name.c_str());
87  vout.general(m_vl, " Niter = %d\n", Niter);
88  vout.general(m_vl, " Stop_cond = %16.8e\n", Stop_cond);
89 
90  //- range check
91  int err = 0;
92  err += ParameterCheck::non_negative(Niter);
93  err += ParameterCheck::square_non_zero(Stop_cond);
94 
95  if (err) {
96  vout.crucial(m_vl, "%s: parameter range check failed.\n", class_name.c_str());
97  exit(EXIT_FAILURE);
98  }
99 
100  //- store values
101  m_Niter = Niter;
102  m_Stop_cond = Stop_cond;
103 }
104 
105 
106 //====================================================================
108  int& Nconv, double& diff)
109 {
110  double bnorm2 = b.norm2();
111  double snorm = 1.0 / bnorm2;
112  int bsize = b.size();
113 
114  vout.paranoiac(m_vl, "%s: solver starts\n", class_name.c_str());
115  vout.paranoiac(m_vl, " norm of b = %16.8e\n", bnorm2);
116  vout.paranoiac(m_vl, " size of b = %d\n", bsize);
117 
118  reset_field(b);
119 
120  copy(s, b); // s = b;
121 
122  double rr;
123  int Nconv2 = -1;
124 
125  solve_init(b, rr);
126 
127  bool is_converged = false;
128 
129  vout.detailed(m_vl, " iter: %8d %22.15e\n", 0, rr * snorm);
130 
131 
132  for (int iter = 0; iter < m_Niter; iter++) {
133  if (is_converged) break;
134 
135  solve_step(rr);
136 
137  vout.detailed(m_vl, " iter: %8d %22.15e\n", 2 * (iter + 1), rr * snorm);
138 
139  if (rr * snorm < m_Stop_cond) {
140  m_fopr->mult(s, x); // s = m_fopr->mult(x);
141  axpy(s, -1.0, b); // s -= b;
142 
143  double diff2 = s.norm2();
144 
145  if (diff2 * snorm < m_Stop_cond) {
146  Nconv2 = 2 * (iter + 1);
147  is_converged = true;
148  } else {
149  copy(s, x); // s = x;
150  solve_init(b, rr);
151  }
152  }
153  }
154 
155 
156  m_fopr->mult(p, x); // p = m_fopr->mult(x);
157  axpy(p, -1.0, b); // p -= b;
158 
159  copy(xq, x); // xq = x;
160 
161  double diff2 = p.norm2();
162 
163  if (diff2 * snorm > m_Stop_cond) {
164  vout.crucial(m_vl, "%s: not converged.\n", class_name.c_str());
165  exit(EXIT_FAILURE);
166  }
167 
168 
169 #pragma omp barrier
170 #pragma omp master
171  {
172  diff = sqrt(diff2);
173  Nconv = Nconv2;
174  }
175 #pragma omp barrier
176 }
177 
178 
179 //====================================================================
181 {
182 #pragma omp barrier
183 #pragma omp master
184  {
185  int Nin = b.nin();
186  int Nvol = b.nvol();
187  int Nex = b.nex();
188 
189  if ((s.nin() != Nin) || (s.nvol() != Nvol) || (s.nex() != Nex)) {
190  s.reset(Nin, Nvol, Nex);
191  r.reset(Nin, Nvol, Nex);
192  x.reset(Nin, Nvol, Nex);
193  p.reset(Nin, Nvol, Nex);
194  v.reset(Nin, Nvol, Nex);
195  t.reset(Nin, Nvol, Nex);
196  rh.reset(Nin, Nvol, Nex);
197  }
198  }
199 #pragma omp barrier
200 
201  vout.detailed(m_vl, " %s: field size reset.\n", class_name.c_str());
202 }
203 
204 
205 //====================================================================
206 void Solver_BiCGStab_Cmplx::solve_init(const Field& b, double& rr)
207 {
208  copy(x, s); // x = s;
209 
210  //- r = b - A x_0
211 
212  m_fopr->mult(v, s); // v = m_fopr->mult(s);
213  copy(r, b); // r = b;
214  axpy(r, -1.0, v); // r -= v;
215  copy(rh, r); // rh = r;
216 
217  rr = r.norm2(); // rr = r * r;
218 
219  p.set(0.0); // p = 0.0
220  v.set(0.0); // v = 0.0
221 
222 #pragma omp barrier
223 #pragma omp master
224  {
225  rho_prev = cmplx(1.0, 0.0);
226  alpha_prev = cmplx(1.0, 0.0);
227  omega_prev = cmplx(1.0, 0.0);
228  }
229 #pragma omp barrier
230 }
231 
232 
233 //====================================================================
235 {
236  dcomplex rho = dotc(rh, r); // rho = rh * r;
237  dcomplex bet = rho * alpha_prev / (rho_prev * omega_prev);
238 
239  // p = r + bet * (p - omega_prev * v);
240  axpy(p, -omega_prev, v); // p += - omega_prev * v;
241  aypx(bet, p, r); // p = bet * p + r;
242 
243  m_fopr->mult(v, p); // v = m_fopr->mult(p);
244 
245  dcomplex aden = dotc(rh, v); // aden = rh * v;
246  dcomplex alpha = rho / aden;
247 
248  copy(s, r); // s = r
249  axpy(s, -alpha, v); // s += - alpha * v;
250 
251  m_fopr->mult(t, s); // t = m_fopr->mult(s);
252 
253  double omega_d = dot(t, t); // omega_d = t * t;
254  dcomplex omega_n = dotc(t, s); // omega_n = t * s;
255  dcomplex omega = omega_n / omega_d;
256 
257  axpy(x, omega, s); // x += omega * s;
258  axpy(x, alpha, p); // x += alpha * p;
259 
260  copy(r, s); // r = s
261  axpy(r, -omega, t); // r += - omega * t;
262 
263  rr = r.norm2(); // rr = r * r;
264 
265 #pragma omp barrier
266 #pragma omp master
267  {
268  rho_prev = rho;
269  alpha_prev = alpha;
270  omega_prev = omega;
271  }
272 #pragma omp barrier
273 }
274 
275 
276 //====================================================================
277 //============================================================END=====
void reset_field(const Field &)
BridgeIO vout
Definition: bridgeIO.cpp:278
void detailed(const char *format,...)
Definition: bridgeIO.cpp:82
void Register_string(const string &, const string &)
Definition: parameters.cpp:351
double norm2() const
Definition: field.cpp:441
static const std::string class_name
void set(const int jin, const int site, const int jex, double v)
Definition: field.h:155
double dot(const Field &y, const Field &x)
Definition: field.cpp:46
void general(const char *format,...)
Definition: bridgeIO.cpp:65
void Register_int(const string &, const int)
Definition: parameters.cpp:330
void solve(Field &solution, const Field &source, int &Nconv, double &diff)
Container of Field-type object.
Definition: field.h:39
int nvol() const
Definition: field.h:116
void set_parameters(const Parameters &params)
Class for parameters.
Definition: parameters.h:38
void copy(Field &y, const Field &x)
copy(y, x): y = x
Definition: field.cpp:381
int square_non_zero(const double v)
Definition: checker.cpp:41
int nin() const
Definition: field.h:115
dcomplex dotc(const Field &y, const Field &x)
Definition: field.cpp:92
void reset(const int Nin, const int Nvol, const int Nex, const element_type cmpl=COMPLEX)
Definition: field.h:84
void aypx(const double a, Field &y, const Field &x)
aypx(y, a, x): y := a * y + x
Definition: field.cpp:461
int nex() const
Definition: field.h:117
void solve_init(const Field &, double &)
void paranoiac(const char *format,...)
Definition: bridgeIO.cpp:99
void axpy(Field &y, const double a, const Field &x)
axpy(y, a, x): y := a * x + y
Definition: field.cpp:168
BiCGStab algorithm with complex variables.
void crucial(const char *format,...)
Definition: bridgeIO.cpp:48
Base class for linear solver class family.
Definition: solver.h:38
static bool Register(const std::string &realm, const creator_callback &cb)
virtual void mult(Field &, const Field &)=0
multiplies fermion operator to a given field (2nd argument)
int non_negative(const int v)
Definition: checker.cpp:21
void Register_double(const string &, const double)
Definition: parameters.cpp:323
Base class of fermion operator family.
Definition: fopr.h:49
int fetch_double(const string &key, double &val) const
Definition: parameters.cpp:124
string get_string(const string &key) const
Definition: parameters.cpp:87
int fetch_int(const string &key, int &val) const
Definition: parameters.cpp:141
Bridge::VerboseLevel m_vl
Definition: solver.h:62
static VerboseLevel set_verbose_level(const std::string &str)
Definition: bridgeIO.cpp:28
static void assert_single_thread(const std::string &classname)
assert currently running on single thread.
int size() const
Definition: field.h:121